[1]廖良文.非线性复微分方程研究的新进展[J].江西师范大学学报(自然科学版),2015,(04):331-339.
 LIAO Liangwen.The New Developments in the Research of Nonlinear Complex Differential Equations[J].,2015,(04):331-339.
点击复制

非线性复微分方程研究的新进展()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
331-339
栏目:
出版日期:
2015-07-01

文章信息/Info

Title:
The New Developments in the Research of Nonlinear Complex Differential Equations
作者:
廖良文
南京大学数学系,江苏 南京,210093
Author(s):
LIAO Liangwen
关键词:
Nevanlinna值分布理论非线性微分方程微分多项式亚纯函数解整函数解
Keywords:
Nevanlinna ’s value distribution theorynonlinear differential equationdifferential polynomialmeromorphic solutionentire solution
分类号:
O175.42
文献标志码:
A
摘要:
利用Nevanlinna理论和Wiman-Valiron理论,研究了代数微分方程没有允许解的问题,给出了几类非线性微分方程整函数解的结构,并利用这些结果将Hayman定理推广到微分多项式,综述了在非线性复微分方程及其应用研究中的最新进展。
Abstract:
The problem that an algebraic differential equation has no admissible meromorphic so-lution is studied by using Nevanlinna's theory and Wiman-Valiron theory. The structures of the entire solutions of some nonlinear differential equations are given,and the Hayman's theorems to some differential polynomials are extended by using these results. Finally,a survey of his groups' recent researches about non-linear complex differential equations and their applications is given.

参考文献/References:

[1] Cherry W,Ye Zhuan.Nevanlinna's theory of value distribution,monographs in math [M].Berlin:Springer-Verlag,2001.
[2] Hayman W K.Meromorphic functions [M].Oxford:Clarendon Press,1964.
[3] Laine I.Nevanlinna theory and complex differential equations [M].Berlin:Walterde Gruyter,1993.
[4] Yang Chungchun,Yi Hongxun.Uniqueness theory of meromorphic functions [M].2nd ed.Beijing:Science Press,2006.
[5] Yang Le.Value distribution theory [M].Berlin:Springer-Verlag & Science Press,1993.
[6] Gackstatter F,Laine I.Zur theorie der gewöhnlichen differentialgleichungen im komplexen [J].Ann Polon Math,1980,38(1):259-287.
[7] He Yuzhan,Laine I.The Hayman-Miles theorem and the differential equation (y')=R(z,y) [J].Analysis,1990,10(4):387-396.
[8] Ishizaki K.On a conjecture of Gackstatter and Laine for some differential equations [J].Proc Japan Acad,1991,67:270-273.
[9] Ozawa M.On a conjecture of Gackstatter and Laine [J].Kodai Math J,1983,6(1):80-87.
[10] Toda N.On the conjecture of Gackstatter and Laine concerning the differential equation(w')=∑j=0αj(z)w [J].Kodai Math J,1983,6(2):238-249.
[11] Toda N.On the growth of meromorphic solutions of some higher order differential equations [J].J Math Soc Japan,1986,38(3):439-451.
[12] Toda N.On the growth of meromorphic solutions of some algebraic differential equations [J].Tôhoku Math J,1986,38(4):599-608.
[13] Wittich H.Neuere untersuchungen über eindeutige analytische funktionen [M].Berlin-Gottingen-Heidelberg:Sprin-ger-Verlag,1955.
[14] Zhang Jianjun,Liao Liangwen.Admissible meromorphic solutions of algebraic differential equations [J].J Math Anal Appl,2013,397(1):225-232.
[15] Li Ping,Yang Chungchun.On the nonexistence of entire solutions of certain type of nonlinear differential equations [J].J Math Annal Appl,2006,320(2):827-835.
[16] Yang Chungchun.On the entire solutions of certain class of non-linear differential equations [J].J Math Annal Appl,1971,33(3):644-649.
[17] Yang Chungchun.On entire solutions of a certain type of nonlinear differential equations [J].Bull Austral Math Soc,2001,64(3):377-380.
[18] Yang Chungchun,Li Ping.On the transcendental solutions of a certain differential equations [J].Arch Math,2004,82(5):442-448.
[19] Li Ping.Entire solutions of certain type of differential equations II [J].J Math Annal Appl,2011,375(1):310-319.
[20] Liao Liangwen,Yang Chungchun,Zhang Jianjun.On meromorphic solutions of certain type of non-linear differential equations [J].Ann Acad Sci Fenn Math,2013,38(2):581-593.
[21] Clunie J.On integral and meromorphic functions [J].J London Math Soc,1962,37(1):17-27.
[22] Gackstatter F,Laine I.Zur theorie der gewöhnlichen differentialgleichungen im komplexen [J].Ann Polon Math,1980,38(3):259-287.
[23] Alotaibi A,Langley J K.The separation of zeros of solutions of higher order linear differential equations with entire coefficients [J].Results Math,2013,63(3/4):1365-1373.
[24] Chuaqui M,Gröhn J,Heittokangas J,et al.Zero separation results for solutions of second order linear differential equations [J].Adv Math,2013,245:382-422.
[25] Heittokangas J,Rättyä J.Zero distribution of solutions of complex linear differential equations determines growth of coefficients [J].Math Nachr,2011,284(4):412-420.
[26] Laine I.Complex differential equations [J].Handbook of Differential Equations:Ordinary Differential Equations.2008,4:269-363.
[27] Liao Liangwen,Ye Zhuan.A class of second order differential equations [J].Israel J of Math,2005,146(1):281-301.
[28] Liao Liangwen,Ye Zhuan.On solutions to nonhomogeneous algebraic differential equations and its application [J].Journal of the Australian Mathematical Society,2014,97(3):391-403.
[29] Hayman W K.Picard values of meromorphic functions and their derivatives [J].Ann Math,1959,70(2):9-42.
[30] Chen Haihui.Yosida functions and Picard values of integral functions and their derivatives [J].Bull Austral Math Soc,1996,54(3):373-381.
[31] Clunie J.On a result of Hayman [J].J Lond Math Soc,1967,42(1):389-392.
[32] Mues E.Zur wertverteilung von differentialpolynomen [J].Arch Math:Basel,1979,32(1):55-67.
[33] Xu Yan,Wu Fenglai,Liao Liangwen.Picard values and normal families of meromorphic functions [J].Proc Roy Soc Edinburgh Sect A,2009,139(5):1091-1099.
[34] Zhang Zhanliang,Li Wei.The derivatives of polynomials of entire and meromorphic functions [J].Chinese Ann Math Ser A,1994,15(2):217-223.
[35] Liao Liangwen.Non-linear differential equations and Hayman's theorem on differential polynomials [J].Complex Variables and Elliptic Equations,2015,60(6):748-756.

备注/Memo

备注/Memo:
国家自然科学基金(11271179)
更新日期/Last Update: 1900-01-01