[1]易才凤,钟文波.2阶微分方程f "+ Af '+ Bf =0解的增长性[J].江西师范大学学报(自然科学版),2015,(04):340-344.
 YI Caifeng,ZHONG Wenbo.On the Growth of Solution to the Second Order Differential Equation f " +Af ' +Bf =0[J].,2015,(04):340-344.
点击复制

2阶微分方程f "+ Af '+ Bf =0解的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
340-344
栏目:
出版日期:
2015-07-01

文章信息/Info

Title:
On the Growth of Solution to the Second Order Differential Equation f " +Af ' +Bf =0
作者:
易才凤;钟文波
江西师范大学数学与信息科学学院,江西 南昌,330022
Author(s):
YI Caifeng;ZHONG Wenbo
关键词:
整函数无穷级线性微分方程Fabry缺项级数
Keywords:
entire functioninfinite orderlinear differential equationsFabry gap series
分类号:
O174.52
文献标志码:
A
摘要:
运用Nevunlinna 值分布理论和整函数的相关理论,研究了2类不同系数的2阶线性微分方程解的增长性。假设A(z)=h(z)eP1(z),其中P1(z)是m次多项式,h(z)是ρ(h)
Abstract:
By using the Nevunlinna theory and the theory of entire functions,the growth of solutions of the second order linear differential equations with two different coefficients is considered. Let A( z)=h( z)eP1(z) be an entire function,where P1( z)is a polynomial of m degree and h( z)is an entire function of orderρ( h)

参考文献/References:

[1] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[2] 蒋业阳,陈宗煊.非齐次线性微分方程解的增长性 [J].数学年刊,2013,34(3):291-298.
[3] 戴崇基,嵇善瑜.ρ级射线及其与Borel方向分布间的关系 [J].上海师范大学学报:自然科学版,1980(2):16-24.
[4] Hille E.Lectures on ordinary differential equations [M].California,London,Don Mills,Ontario:Addison Wesley.Publishing Company,Reading,Massachusetts Menlo park,1969.
[5] Gundersen G G.Finite order solution of second order linear differential equations [J].Trans Amer Math Soc,1988,305(1):415-429.
[6] Hellerstein S,Miles J,Rossi J.On the growth of solutions of f ″+gf '+hf=0 [J].Trans Amer Math Soc,1991,324(2):693-706.
[7] 陈宗煊.微分方程f ″+ef '+Q(z)f=0解的增长性 [J].中国科学:A辑,2001,31(9):775-784.
[8] Gundersen G G.On the question of whether f ″+ef '+B(z)f=0 can admit a solution f0 of finite order [J].Pro R S E,1986,102A(1/2):9-17.
[9] 吴秀碧,伍鹏程.关于方程 f ″+Af '+Bf=0 解的增长性,其中系数A是一个2阶线性微分方程的解 [J].数学物理学报,2013,33A(1):46-52.
[10] Barry P D.Some theorems related to the cos πρ theorem [J].Proc London Math Soc,1970,21(3):334-360.
[11] Gundersen G G.Estimate for the logarithmic derivative of a meromorphic function,plussimilar estimates [J].J London Math Soc,1988,37(2):88-104.
[12] Sons L R.An analogue of a theorem of W.H.J. Fuchs on gap series [J].Proc London Math Soc,1970,21(3):525-539.
[13] 艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2014,38(3):250-253.
[14] 钟文波,易才凤.一类高阶线性微分方程解的增长级 [J].江西师范大学学报:自然科学版,2014,38(4):399-402.
[15] 龚攀,肖丽鹏.某类高阶复微分方程解的增长性 [J].江西师范大学学报:自然科学版,2014,38(5):512-516.

相似文献/References:

[1]涂金,刘翠云,徐洪焱.亚纯函数相对于(r)的[p,q]增长级[J].江西师范大学学报(自然科学版),2012,(01):47.
 TU Jin,LIU Cui-yun,XU Hong-yan.Meromorphic Functions of Relative [p,q] Order to (r)[J].,2012,(04):47.
[2]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].,2012,(04):579.
[3]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].,2013,(04):1.
[4]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(04):171.
[5]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].,2013,(04):233.
[6]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].,2013,(04):401.
[7]何涛,易才凤.复振荡中的辐角分布[J].江西师范大学学报(自然科学版),2013,(05):453.
 HE Tao,YI Cai-feng.On Angular Distribution in Complex Oscillation[J].,2013,(04):453.
[8]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(04):250.
[9]闵小花,张红霞,易才凤.2阶微分方程的解与小函数的关系[J].江西师范大学学报(自然科学版),2014,(06):551.
 MIN Xiao-hua,ZHANG Hong-xia,YI Cai-feng.The Relations between Solutions of Second Order Linear Differential Equations with Functions of Small Growth[J].,2014,(04):551.
[10]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].,2012,(04):230.
[11]钟文波,易才凤.一类高阶线性微分方程解的增长级[J].江西师范大学学报(自然科学版),2014,(04):399.
 ZHONG Wen-bo,YI Cai-feng.On the Growth of Solutions of a Class of Higher Order Linear Differential Equations[J].,2014,(04):399.

备注/Memo

备注/Memo:
国家自然科学基金(11171170)
更新日期/Last Update: 1900-01-01