[1]万向东.外加经典驱动场保护非马尔科夫信道量子失协的对策[J].江西师范大学学报(自然科学版),2015,(04):393-398.
 WAN Xiangdong.Strategy for Protecting Quantum Discord in Non-Markov Channel by External Classical Field[J].,2015,(04):393-398.
点击复制

外加经典驱动场保护非马尔科夫信道量子失协的对策()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
393-398
栏目:
出版日期:
2015-07-01

文章信息/Info

Title:
Strategy for Protecting Quantum Discord in Non-Markov Channel by External Classical Field
作者:
万向东
江西师范大学现代教育技术应用中心,江西 南昌,330022
Author(s):
WAN Xiangdong
关键词:
量子失协非马尔科夫信道准模理论
Keywords:
quantum discordnon-markov channelquasi mode theory
分类号:
O431.2
文献标志码:
A
摘要:
讨论了外加经典驱动场对非马尔科夫信道量子失协动力学演化的影响。研究结果表明:尽管调控经典场的幅度、频率均能够对非马尔科夫信道量子失协起保护作用,但保护的效果有较大差别;能对系统量子失协保持起关键作用的是量子比特的有效频率与热库中心频率间的总失谐,调控经典驱动场的幅度是增大总失谐的最有效的途径。提升经典驱动场的幅度是实现量子失协保持最有效的方法。
Abstract:
The effect of external classical field on the quantum discord in non-markov channel has been discussed. In spite of manipulating the amplitude and frequency of the external field help to protect the quantum discord in non-markov channel,the efficiency is quite different. The total detuning between the efficient frequency of qubit and the central frequency of thermal bath plays a vital role in maintaining the quantum discord,and the most efficient way to enhance the total detuning is to manipulate the amplitude of the classical field. Therefore,increasing the am-plitude of classical field is the most efficient method for quantum discord maintaining.

参考文献/References:

[1] Modi K,Brodutch A,Cable H,et al.The classical-quantum boundary for correlations:discord and related measures [J].Rev Mod Phys,2012,84(4):1655-1707.
[2] Ma Jian,Sun Zhe,Wang Xiaoguang,et al.Entanglement dynamics of two qubits in a common bath [J].Phys Rev A,2012,85:62323.
[3] Ji Yinghua,Liu Yongmei.Regulation of entanglement and geometric quantum discord of hybrid superconducting qubits for circuit QED [J].Inter J Theor Phys,2013,52(9):3220-3228.
[4] Luo Shunlong.Quantum discord for two-qubit systems [J].Phys Rev A,2008,77:42303.
[5] Ollivier H,Zurek W H.Quantum discord:A measure of the quantumness of correlations [J].Phys Rev Lett,2001,88:17901-17905.
[6] Lopez C E,Romero G,Lastra F,et al.Retamal,sudden birth versus sudden death of entanglement in multipartite systems [J].Phys Rev Lett,2008,101:80503.
[7] Ji Yinghua,Liu Yongmei.Investigations into quantum correlation of coupled qubits in a squeezed vacuum reservoir [J].Chin Phys B,2013,22:20305.
[8] Laine E M,Piilo J,Breuer H P.Measure for the non-markovianity of quantum processes [J].Phys Rev A,2010,81:62115.
[9] Ji Yinghua,Li W D,Wen S J.Modulation of entanglement and quantum discord for circuit cavity QED states [J].Optik,124(24):6882.
[10] Xiang Zeliang,Ashhab S,You J Q,et al.Hybrid quantum circuits:Superconducting circuits interacting with other quantum systems [J].Rev Mod Phys,2013,85:623.
[11] Maniscalco S,Francica F,Zaffino R L,et al.Protecting entanglement via the quantum Zeno effect [J].Phys Rev Lett,2008,100:90503.
[12] Li Yang,Zhou Jiang,Guo Hong.Effect of the dipole-dipole interaction for two atoms with different couplings in a non-markovian environment [J].Phys Rev A,2009,79:12309.
[13] Bellomo B,Lo Franco R,Compagno G.Non-markovian effects on the dynamics of entanglement [J].Phys Rev Lett,2007,99:160502.
[14] Zhang Y J,Man Z X,Xia Y J.[J].Eur Phys J D,2009,55:173.
[15] Branczyk A M,Mendonca P E M F,Gilchrist A,et al.Quantum control of a single qubit [J].Phys Rev A,2007,75:12329.
[16] Xiao Xing,Fang Mang.Reexamination of the feedback control on quantum states via weak measurements [J].Phys Rev A,2011,83:154301.
[17] Bellomo B,Lo Franco R,Maniscalco S,et al,Entanglement trapping in structured emnronments [J].Phys Rev A,2008,78:60302.
[18] Fanchini F F,Werlang T,Brasil C A,et al.Non-markovian dynamics of quantum discord [J].Phys Rev A,2010,81:52107.
[19] Maziero J,Celery L C,Serra R M,et al.Classical and quantum correlations under decoherence [J].Phys Rev A,2009,80:44102.
[20] Ding Bangfu,Wang Xiaoyun,Zhao Heping.Quantum and classical correlations for a two-qubit X structure density matrix [J].Chin Phys B,2010,20:100302.
[21] Ali M,Ran A R P,Alber G.Quantum discord for two-qubit X states [J].Phys Rev A,2010,81:42105.
[22] Yin Xiaolei,Ma Jian,Wang Xiaoguang,et al.Spin squeezing under non-markovian channels by the hierarchy equation method [J].Phys Rev A,2012,86:12308.
[23] Xiao Xing,Fang Maofa,Li Yanling,et al.Robust entanglement preserving by detuning in non-markovian regime [J].J Phys B:At Mol Opt Phys,2009,42:235502.
[24]Li Jungang,Zou Jian,Shao Bin.Non-markovianity of the damped Jaynes-cummings model with detuning [J].Phys Rev A,2010,81:62124.
[25] Li Jungang,Zou Jian,Shao Bin.Entanglement evolution of two qubits under noisy environments [J].Phys Rev A,2010,82:42318.
[26] Dalton B J,Barnett S M,Garraway B M.Theory of pseudomodes in quantum optical processes [J].Phys Rev A,2001,64:53813.
[27]Li Jungang,Zou Jian,Shao Bin.Entanglement backflow under the composite effect of two non-markovian reservoirs [J].Physics Letters A,2012,376:1020.
[28]Xiao Xing,Fang Maofa,Li Yanling.Non-markovian dynamics of two qubits driven by classical fields:population trapping and entanglement preservation [J].J Phys B:At Mol Opt Phys,2010,43:185505.
[29]Wang Bo,Xu Zhenyu,Chen Zeqian,et al.Non-markovian effect on the quantum discord [J].Phys Rev A,2010,81:14101.

相似文献/References:

[1]于雁霞,胡燕,嵇英华.相互作用的量子比特在不同环境下的共生纠缠度和量子失协分析[J].江西师范大学学报(自然科学版),2012,(06):619.
 LIAO Chun-hua,DU Jian-qiang,CHEN Chun-lei,et al.The Analysis on Concurrence and Quantum Discord of Interating Qubits in Different Environments[J].,2012,(04):619.

备注/Memo

备注/Memo:
江西省自然科学基金(20132BAB202007)
更新日期/Last Update: 1900-01-01