[1]余华,周勤,刘岚.漂移瑞利混合滤波算法改进及其在机动目标纯方位跟踪中的应用[J].江西师范大学学报(自然科学版),2015,(04):399-403.
 YU Hua,ZHOU Qin,LIU Lan.Research on the Modified Shifted Rayleigh Mixture Filter and Its Use on Bearings-Only Maneuvering Target Tracking[J].,2015,(04):399-403.
点击复制

漂移瑞利混合滤波算法改进及其在机动目标纯方位跟踪中的应用()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
399-403
栏目:
出版日期:
2015-07-01

文章信息/Info

Title:
Research on the Modified Shifted Rayleigh Mixture Filter and Its Use on Bearings-Only Maneuvering Target Tracking
作者:
余华;周勤;刘岚
武汉东湖学院电子信息工程学院,湖北 武汉,430212
Author(s):
YU Hua;ZHOU Qin;LIU Lan
关键词:
纯方位跟踪改进型漂移瑞利混合滤波算法粒子滤波漂移瑞利混和滤波
Keywords:
bearings-only trackingthe modified shifted Rayleigh mixture filterparticle filtershifted Rayleigh mixture filter
分类号:
TP273
文献标志码:
A
摘要:
针对纯方位机动目标跟踪问题,利用基于代价函数的高斯混合成分减少技术改进了漂移瑞利混合滤波算法,提出一种改进型漂移瑞利混合滤波算法。仿真结果表明:在强杂波背景下,改进型漂移瑞利混合滤波算法( MSRMF)的计算量与漂移瑞利混合滤波算法相当,但计算精度更高;漂移瑞利混合滤波算法及其改进型算法的估值精度与粒子滤波算法相当,但其计算量却比粒子滤波算法减小了一个数量级。
Abstract:
The modified shifted Rayleigh mixture filter is introduced for bearings-only maneuvering targets tracking, which use Gaussian mixture reduction method based on cost-function to improve the shifted Rayleigh mixture filter. The MSRMF is based on jump Markov linear system and it permits the presence of strong noise. Simulations demon-strate the effectiveness of the MSRMF in challenging scenario with strong noise. It achieves the accuracy of a PF, while reducing the computational burden by an order of magnitude. Furthermore,it improves the SRMF as regards accuracy,through its computational demands is just about the same as the SRMF’s.

参考文献/References:

[1] Clark J M C,Vinter R B,Yaqoob M M.The shifted Rayleigh filter for bearings only tracking [C].Proc 8th International Conf on Information Fusion,Philadelphia,2005:93-100.
[2] Clark J M C,Robbiati S A,Vinter R B.The shifted Rayleigh mixture filter for bearings-only tracking of maneuvering targets [J].IEEE Trans on Signal Processing,2007,55(7):3218-3226.
[3] Malcolm W P,Doucet A,Zollo S.Sequential Monte Carlo tracking schemes for maneuvering targets with passive ranging [C].Proc 5th Int Conf Inform Fusion,2002,1:482-488.
[4] Bar-Shalom Y,Li X R.Estimation and tracking:principles,techniques,and software [M].Norwood,MA: Artech House,1993.
[5] Akashi,Kumamoto H.Random sampling approach to state estimation in switching environments [J].Automatica,1977,13:429-434.
[6] Chen R,Liu J S.Mixture Kalman filters [J].J Roy Statist Soc B,2000,62(3):493-508.
[7] Doucet A,Gordon N J,Krishnamurthy V.Particle filter for state estimation of jump Markov linear systems [J].IEEE Trans on Signal Process,2001(3),49(3):613-624.
[8] Fearnhead P,Clifford P.On-line inference for hidden Markov models via particle filters [J].J Roy Statist Soc B,2003,65(4):887-899.
[9] Williams J L,Maybeck P S.Cost-function-based Gaussian mixture reduction for target tracking [C].Proc 6th Int Conf Inform Fusion,2003(2):1047-1054.
[10] Salmond D J.Mixture reduction algorithms for target tracking in clutter [C].SPIE Signal Data Process Small Targets,1990,1305:434-444.
[11] Tugnait J K.Detection and estimation for abruptly changing systems [J].Automatica,1982,18:607-615.
[12] McGinnity S,Irwin G.Multiple model bootstrap filter for maneuvering target tracking [J].IEEE Trans Aerosp Electron Syst,2000,36(3)1006-1012.
[13] Carpenter J,Clifford P,Fearnhead P.Improved particle filter for nonlinear problems [J].Proc IEE Radar,Sonar Navigation,1999,146(1):2-7.
[14] 余华.漂移瑞利滤波算法及其在纯方位跟踪中的应用 [J].计算技术与自动化,2014,33(4):74-77.

备注/Memo

备注/Memo:
国家自然科学基金(61372165)
更新日期/Last Update: 1900-01-01