[1]孔令华.哈密尔顿系统的分裂步多辛数值积分[J].江西师范大学学报(自然科学版),2015,(05):507-513.
 KONG Linghua.The Splitting Multisymplectic Numerical Methods for Hamiltonian Systems[J].,2015,(05):507-513.
点击复制

哈密尔顿系统的分裂步多辛数值积分()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年05期
页码:
507-513
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
The Splitting Multisymplectic Numerical Methods for Hamiltonian Systems
作者:
孔令华
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
KONG Linghua
关键词:
分裂方法多辛积分计算效率哈密尔顿系统
Keywords:
splitting methodmultisymplectic integratorcomputational efficiencyHamiltonian system
分类号:
O241.8
文献标志码:
A
摘要:
对哈密尔顿系统而言,辛或多辛积分较传统的数值方法具有优越性。然而,此类数值格式大部分都是隐式的,从而在每一个时间步需要求解一个非线性的代数方程组,这将直接导致计算效率不高。在多辛积分中引进分裂步技巧,称之为分裂步多辛积分,可以弥补这一不足之处,这一数值方法的框架将在该文中简要地讨论,其中,数值例子给出了该方法在物理问题中的应用。
Abstract:
For Hamiltonian systems,symplectic integrators or multisymplectic integrators are superior to tradi-tional numerica methods for Hamiltonian systems. However,most of them are implicit and engender a coupled nonlinear algebraic system at every time step. It leads to reduce the computational efficiency directly. Splitting multisymplectic integrator which combines multisymplectic integrators with splitting technique can offset this flaw. The framework of this numerical method will be briefly reviewed. Some numerical examples are shown to il-lustrate the application of the methods in physics.

参考文献/References:

[1] Feng Kang.On difference schemes and symplectic geometry [C].Beijing:Science Press,1985:42-58.
[2] Feng Kang,Qin Mengzhao.Symplectic geometric algorithms for Hamiltonian systems [M].Heidelberg:Springer and Zhejiang Science and Technology Publishing House,2010.
[3] Hairer E,Lubich C,Wanner G.Geometric numerical integration:Structure preserving algorithms for ordinary diffenential equations [M].2nd ed.Berlin:Springer-Verlag,2006.
[4] Bridges T J,Reich S.Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that cssonserve symplecticity [J].Phys Lett A 2001,284(4):184-193.
[5] Marsden J,Patrick G,Shkoller S.Mulltisymplectic geometry,variational integrators,and nonlinear PDEs [J].Comm Math Phys,1998,199(2):351-395.
[6] Reich S.Multi-symplectic Runge-Kutta method for Hamiltonian wave equations [J].J Comput Phys,2000,157(2):473-499.
[7] Hong Jialin,Li Chun.Multi-symplectic Runge-Kutta methods for nonlinear dirac equations [J].J Comput Phys,2006,211(2):448-472.
[8] Hong Jialin,Liu Hongyu,Sun Geng.The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs [J].Math Comput,2006,75(253):167-181.
[9] Qin Mengzhao,Wang Yushun.Structure-preserving algorithm for partial differential equation [M].Hangzhou:Zhejiang Science and Technology Publishing House,2013.
[10] Wang Yushun,Hong Jialin.Multi-symplectic algorithms for Hamiltonian partial differential equations [J].Commun Appl Math & Comput,2013,27(2):163-230.
[11] Hong Jialin,Kong Linghua.Novel multisymplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term [J].Commun Comput Phys,2010,7(3):613-630.
[12] Kong Linghua,Hong Jialin,Zhang Jingjing.Splitting multi-symplectic methods for Maxwell's equation [J].J Comput Phys,2010,229(11):4259-4278.
[13] Kong Linghua,Hong Jialin,Zhang Jingjing.LOD-MS for Gross-Pitaevskii equation in Bose-Einstein condensates [J].Commun Comput Phys,2013,14(1):219-214.
[14] Zhu Huajun,Chen Yaming,Song Songhe,et al.Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrödinger equations [J].Appl Numer Math,2011,61(3):308-321.
[15] Ma Yuanping,Kong Linghua,Hong Jialin,et al.High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations [J].Comput & Math with Appl,2011,61(2):319-333.
[16] Kong Linghua,Cao Ying,Wang Lan.Split-step multisymplectic integrator for the fourth-order Schrödinger equation with cubic nonlinear term [J].Chin J Comput Phys,2011,28(5):76-82.
[17] Tong Hui,Kong Linghua,Wang Lan.Compact splitting multisymplectic scheme for Dirac equation [J].J Jiangxi Normal Univer,2014,38(5):521-525.
[18] Huang Hong,Wang Lan.Local one-dimensional multisymplectic integrator for Schrödinger equation [J].J Jiangxi Normal Univer,2011,35(5):455-458.
[19] Wang Lan,Fu Fangfang,Tong Hui.The split-step multisymplectic scheme for Dirac equation [J].J Jiangxi Normal Univer,2013,37(5):462-465.
[20] Zhou Wenying,Kong Linghua,Wang Lan.The energy identities of the local one dimensional multisymplectic scheme for 3-D Maxwell's equation [J].J Jiangxi Normal Univer,2015,39(1):55-58.

相似文献/References:

[1]童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式[J].江西师范大学学报(自然科学版),2014,(05):521.
 TONG Hui,KONG Ling-hua,WANG Lan.Compact Splitting Multisymplectic Scheme for Dirac Equation[J].,2014,(05):521.

备注/Memo

备注/Memo:
国家自然科学基金(11301234,11271171);江西省自然科学基金(20142BCB23009,20151BAB201012)
更新日期/Last Update: 1900-01-01