[1]肖水明,杨兰惠,周家兴.分数阶流行病模型的近似解析解[J].江西师范大学学报(自然科学版),2015,(05):526-530.
 XIAO Shuiming,YANG Lanhui,ZHOU Jiaxing.The Analytical Approximation of Solutions for Fractional Epidemic Models[J].,2015,(05):526-530.
点击复制

分数阶流行病模型的近似解析解()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年05期
页码:
526-530
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
The Analytical Approximation of Solutions for Fractional Epidemic Models
作者:
肖水明;杨兰惠;周家兴
南昌大学理学院数学系,江西南昌,330031;南昌大学软件学院,江西南昌,330047
Author(s):
XIAO Shuiming;YANG Lanhui;ZHOU Jiaxing
关键词:
分数阶微分方程流行病模型同伦摄动方法近似解析解
Keywords:
fractional differential equationsepidemic modelhomotopy perturbation methodapproximate analytic solution
分类号:
O29
文献标志码:
A
摘要:
在经典的SIR,SIRS,SIS流行病模型基础上引入关于时间的分数阶导数,并利用同伦摄动方法分别求出这3个模型的近似解析解,而且应用数值实验结果印证了FDEs的记忆特征。改进和推广了一些已有的成果,且对深入研究分数阶流行病模型有很好的启示作用。
Abstract:
By the homotopy perturbation method( HPM),the approximate analytic solutions of fractional-order time derivatives are presented for the classical SIR,SIRS and SIS epidemic models with initial values. Besides,the nu-merical simulation results illustrate the memory character of FDEs,which improves and expands current results for epidemic dynamic. It will inspire further research on the fractional epidemic systems.

参考文献/References:

[1] Kermack W O,McKendrick A G.Contributions to the mathematical theory of epidemics-I [J].Bulletin of Mathemactial Biology,1991,53(1/2):33-55.
[2] Baily N T J.The mathematical theory of infectious diseases [M].New York:Hafner,1975.
[3] El-Doma M.Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption [J].Mathematical and Computer Modelling,1999,29(7):31-43.
[4] Zhang Zhonghua,Peng Jigen.A SIRS epidemic model with infection-age dependence [J].Journal of Mathematical Analysis and Applications,2007,331(2):1396-1414.
[5] Ma Wanbiao,Song Mei,Takeuchi Y.Global stability of an SIR epidemicmodel with time delay [J].Applied Mathematics Letters,2004,17(10):1141-1145.
[6] McCluskey M C.Complete global stability for an SIR epidemic model with delay:distributed or discrete [J].Nonlinear Analysis:Real World Applications,2010,11(1):55-59.
[7] Huang Wenzhang,Han Maoan,Liu Kaiyu.Dynamics of an SIR reaction-diffusion epidemic model for disease transmission [J].Mathematical Biosciences and Engineering,2010,7(1):51-66.
[8] Peng Rui,Liu Shengqiang.Global stability of the steady states of an SIS epidemic reaction-diffusion model [J].Nonlinear Analysis:Theory,Methods & Applications,2009,71(1/2):239-247.
[9] Diethelm K.The analysis of fractional differential equations [M].Berlin:Springer,2010.
[10] Pooseh S,Rodrigues H S,Torres D F M.Fractional derivatives in dengue epidemics [EB/OL].http://arxiv.org/abs/1108.1683.
[11] He Jihuan.Homotopy perturbation technique [J].Computer methods in applied mechanics and engineering,1999,178(3/4):257-262.
[12] He Jihuan.A coupling method of a homotopy technique and a perturbation technique for non-linear problems [J].International Journal of Nonlinear Mechanics,2000,35(1):37-43.
[13] Mohyud-Din S T,Yildirim A,Hosseini M M.Homotopy perturbation method for fractional differential equations [J].World Applied Sciences Journal,2011,12:2180-2183.
[14] Das S,Gupta P K,Rajeev.A fractional predator-prey model and its solution [J].International Journal of Nonlinear Sciences and Numerical Simulation,2009,10(1):873-876.
[15] Das S,Gupta P K.A mathematical model on fractional Lotka-Volterra equations [J].Journal of Theoretical Biology,2011,277(1):1-6.

备注/Memo

备注/Memo:
国家自然科学基金(61304161);江西省教改课题(JXJG-13-1-3)
更新日期/Last Update: 1900-01-01