[1]张力健,叶志清.一种成功概率几乎完美的基于相干纠缠态的隐形传态方案[J].江西师范大学学报(自然科学版),2016,40(01):61-64.
 ZHANG Lijian,YE Zhiqing.The Scheme of Teleportation Based on Coherent Entangled State with Almost Perfect Probability of Success[J].,2016,40(01):61-64.
点击复制

一种成功概率几乎完美的基于相干纠缠态的隐形传态方案()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年01期
页码:
61-64
栏目:
出版日期:
2016-01-25

文章信息/Info

Title:
The Scheme of Teleportation Based on Coherent Entangled State with Almost Perfect Probability of Success
作者:
张力健;叶志清
江西师范大学物理与通信电子学院,江西省光电子与通信重点实验室,江西 南昌 330022
Author(s):
ZHANG LijianYE Zhiqing
College of Physics & Communic Electronics,Key Laboratory of Photoelectronic & Telecomminication of Jiangxi Province, Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
相干纠缠态 隐形传态 幺正变换
Keywords:
coherent entangled state teleportation unitary operation
分类号:
TN 918
文献标志码:
A
摘要:
提出以四模纠缠相干态作为量子信道,待传的量子信息为三模相干叠加态,系统组成的系综态经过一个由分束器和移相器组成的线性光学系统,然后通过奇偶态测量,并把测量结果通过经典信道告诉对方,对方选择合适的幺正变换就可以恢复待传的量子信息,通过计算,该方案所得到的成功传态概率几乎完美,同时保真度也趋近于1.
Abstract:
The paper presents a four-mode entangled coherent state as a quantum channel,quantum information to be transmitted is a three-mode coherent superposition state,the department of state through the mechanized system consisting of a linear optical system by the beam splitter and the phase shifter formed.Then by parity state measurement,and the measurement results tell each other through a classical channel,the other to select the appropriate unitary operation can be restored quantum information to be transmitted,by calculating the probability of successful teleportation of this scheme was almost perfect,what is more the fidelity close to 1.

参考文献/References:

[1] Prakash H,Chandra N,Praksh R,et al.Improving the teleportation of entangled coherent states [J].Physical Review A,2007,75(4):810-814.
[2] Prakash H,Chandra N,Prakash R,et al.Entanglement diversion between two pairs of entangled states:fidelity and decoherence [J].International Journal of Modern Physics B,2009(4),23:585-595.
[3] DiVincenzo D P.Quantum computation [J].Science.1995,270(5234):255-261.
[4] 李思广,黄健.数字签名技术及在网络安全中的应用 [J].四川兵工学报,2008,29(2):115-116.
[5] 林帅,林雄.量子密码通信及其研究进展 [J].电脑与信息技术,2012,20(6):13-15.
[6] 郭光灿,周正威,郭国平,等.量子计算机的发展现状与趋势 [J].学科发展,2010,25(5):516-524.
[7] Bennett C H,Weisner S J.Computation via one-and two-particle operatora on Einstein-Podolsky-Rosen states [J].Physical Review Letter,1992,69(20):2881-2884.
[8] 刘传龙,郑亦庄.纠缠相干态的量子隐形传态 [J].物理学报,2006,55(12):6222-6228.
[9] 苏晓琴,郭光灿.量子隐形传态 [J].物理学进展,2004,22(3):259-272.
[10] Weedbrook C,Pirandola S,Garcia-Patron R.et al.Gaussian quantum information [J].Review Modern Physics,2012,84(2):621-669.
[11] Ekert A K.Quantum cryptography based on Bell's theorem [J].Physical Review Letter,1991,67(6):661-663.
[12] Ma Xiaosong,Herbst T,Scheidl T,et al.Quantum teleportation over 143 kilometres using active feed-forward [J].Nature,2012,489(7415):269-273.
[13] Peng Jiayin,Mo Ziwen.Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels [J].Chinese Physical B,2013,22(5):160-167.
[14] Pirandola S,Eisert S,Weedbroor C,et al.Advances in quantum teleportation [J].Cancer Research,2015,9(10):5439.
[15] Shuntaro T,Takahiro M,Maria F,et al.Deterministic quantum teleportation of photonic quantum bits by a hybrid technique [J].Nature,2013,500(7462):315-318.
[16] Girolami D.Observable measure of quantum coherence in finite dimensional systems [J].Physical Review Letter,2014,113(17):170401.
[17] Karpat G,Akmak B,Fanchini F F.Quantum coherence and uncertainty in the anisotropic XY chain [J].Physical Review B,2014,90(90):104431.
[18] Enk S J V,Hirotao.Entangled coherent states:teleportation and decoherence [J].Physical Review A,2001,64(2):29-32.
[19] Wang Xiaoguang.Quantum teleportation of entangled coherent states [J].Physical Review A,2001,64:22302.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(61368001)资助项目.
更新日期/Last Update: 1900-01-01