[1]林睿.应用量纲归一化方法改进的分数傅里叶变换快速算法[J].江西师范大学学报(自然科学版),2016,40(01):71-76.
 LIN Rui.An Improved Fast Algorithm for the Fractional Fourier Transform Based on the Method of the Dimensional Normalization[J].,2016,40(01):71-76.
点击复制

应用量纲归一化方法改进的分数傅里叶变换快速算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年01期
页码:
71-76
栏目:
出版日期:
2016-01-25

文章信息/Info

Title:
An Improved Fast Algorithm for the Fractional Fourier Transform Based on the Method of the Dimensional Normalization
作者:
林睿
1.重庆工商大学计算科学与信息工程学院,重庆 400067; 2.中国科学院国家授时中心,陕西 西安 710600; 3.中国科学院大学,北京 100049
Author(s):
LIN Rui
1.School of Computer Science and Information Engineering,Chongqing Technology and Business University,Chongqing 400067,China; 2.National Time Service Centre,Chinese Academy of Science,Xi' an Shanxi 710060,China; 3.University of Chinese Academy of Sciences,Beijing 100049,China
关键词:
分数傅里叶变换 角谱衍射 量纲归一化 采样间隔 离散化
Keywords:
fractional Fourier transform angle spectrum diffraction dimensional normalization sample interval discretization
分类号:
O 438.2
文献标志码:
A
摘要:
提出了一种实现分数傅里叶变换快速计算的改进算法,该算法将量纲归一化的方法应用到分数傅里叶变换光学系统中,严格导出了空域、分数傅里叶变换域和傅里叶变换域的采样间隔,并根据该采样间隔模拟分数傅里叶变换光学系统实现了分数傅里叶变换快速算法.相应的数值模拟实验表明:该算法计算的强度值结果与Kutay的算法相应的计算结果一致; 以Kutay算法的计算结果为参考,该算法计算的准确性要优于Bultheel的算法的计算结果; 与Kutay的算法和Bultheel的算法相比较,该算法的计算速度较快.实验还表明,该算法的计算结果不会随人为确定的2个参数(波长和透镜焦距)的变化而变化,具有良好的稳定性.
Abstract:
An improved algorithm,based on the method of the dimensional normalization,for the fast calculation of the fractional Fourier transform is proposed.In the algorithm,the sampling intervals of the transform domains,such as spatial domain,Fourier domain and fractional Fourier domain,are strictly deduced out in the condition of dimensional normalization.Based on these sampling intervals,the fast algorithm for the fractional Fourier transform is implemented by simulating the optical fractional Fourier transform system.Numerical simulation experiments demonstrate that the calculated intensity results of this algorithm are consistent with that of Kutay's algorithm(in the Ozaktas group).Referring to the computed results of the Kutay's algorithm,the calculation accuracy of the algorithm proposed in this paper is better than that of Bultheel's algorithm.Compared with the Kutay's algorithm and the Bultheel's algorithm,the algorithm proposed in this paper calculates faster.Experiments also show that the computed results of the algorithm proposed in this paper do not vary with the variation of the two artificially determined parameters(such as wavelength and the focal length of the lens),which proves the robust of the algorithm.

参考文献/References:

[1] Lohmann A W.Image rotation,wigner rotation,and the fractional fourier transform [J].Journal of the Optical Society America A,1993,10(10):2181-2186.
[2] Fan Hongyi,Fan Yue.EPR entangled states and complex fractional Fourier transformation [J].European Physical Journal D,2002,21(2):233-238.
[3] 陆大全,胡巍.椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性 [J].物理学报,2013,62(8):84211-84217.
[4] 颜才杰,金伟民.利用全息透镜阵列实现多通道分数傅里叶变换 [J].激光与红外,2005,35(10):762-764.
[5] Mei Lin,Zhang Qinyu,Sha Xuejun,et al.Digital computation of the weighted-type fractional Fourier transform [J].Science China Information Sciences,2013,56(7):1-12.
[6] Sejdic E,Djurovic I,Stankovic L.Fractional Fourier transform as a signal processing tool:an overview of recent developments [J].Signal Process,2011,91(6):1351-1369.
[7] 王鹏,袁操今,王林,李重光.基于分数傅里叶变换的双彩色图像加密 [J].激光技术,2014,38(4):551-555.
[8] Ozaktas H M,Ankan O,Kutay M A,et al.Digital computation of the fractional Fourier transform [J].IEEE Transactions On Signal Processing,1996,44(9):2141-2150.
[9] 赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化 [J].北京理工大学学报,2005,25(4):360-364.
[10] 刘锋,徐会法,陶然,等.分数阶Fourier 域多分量LFM 信号间的分辨研究 [J].中国科学:信息科学,2012,42(2):138-150.
[11] 刘锋,徐会法,陶然.分数阶Fourier变换中量纲归一化因子的选取 [J].系统工程与电子技术,2011,33(2):237-241.
[12] Kutay M A.fracF.m:Fast computation of the fractional fourier transform[EB/OL].
[2015-08-09].http://www.ee.bilkent.edu.tr/~haldun/fracF.m.
[13] Bultheel A.frft.m:Calculation of the fractional Fourier transform [EB/OL].
[2015-08-09].http://nalag.cs.kuleuven.be/ research/software/FRFT/frft.m.
[14] Pellat-Finet P.Fresnel diffraction and the fractional-order Fourier transform [J].Optics Letters,1994,19(18):1388-1390.
[15] Garcia J,Mas D,Dorsch R.Fractional-Fourier transform calculation through the fast-Fourier-transform algorithm [J].Applied Optics,1996,35(35):7013-7018.
[16] Yang Xingpeng,Tan Qiaofeng.Improved fast fractional-Fourier-transform algorithm [J].Journal Optical Society America A,2004,21(9):1677-1681.
[17] Marinho F J,Bernardo L M.Numerical calculation of fractional Fourier transforms with a single fast-Fourier-transform algorithm [J].Journal Optical Society America A,1998,15(8):2111-2116.
[18] 陈文静,苏显渝.基于角谱分析的分数傅里叶变换数值模拟算法 [J].光电子:激光,2002,13(4):401-404.
[19] 冯迪,严瑛白,金国藩,等.求解分数傅里叶变换衍射积分的一种快速算法 [J].光子学报,2003,32(7):885-888.
[20] 郭海燕,于仕财,关键,等.基于FRFT模最大值的LFM信号参数估计方法 [J].雷达科学与技术,2010,8(5):438-441.
[21] 林睿,刘启能,张翠玲.一种新的gyrator变换的快速算法 [J].激光技术,2012,36(1):50-53.
[22] Bitran Y,Mendlovic D,Dorsch R,et al.Fractional Fourier transform:simulations and experimental results [J].Applied Optics,1995,34(8):1329-1332.
[23] Sahin A,Ozaktas H M,Mendlovic D.Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions [J].Optics Communications,1995,120(3):134-138.

备注/Memo

备注/Memo:
基金项目:中国科学院西部之光在职博士研究生课题(Y307YR9101)资助项目.
更新日期/Last Update: 1900-01-01