[1]袁玉全,曾祥国,胡燕飞.含裂纹bcc铁拉伸与疲劳的分子动力学模拟研究[J].江西师范大学学报(自然科学版),2016,40(02):133-139.
 YUAN Yuquan,ZENG Xiangguo,HU Yanfei.Molecular Dynamics Simulation for bcc Iron with Central Crack under Uniaxial Tensile and Fatigue Loading[J].,2016,40(02):133-139.
点击复制

含裂纹bcc铁拉伸与疲劳的分子动力学模拟研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年02期
页码:
133-139
栏目:
出版日期:
2016-03-25

文章信息/Info

Title:
Molecular Dynamics Simulation for bcc Iron with Central Crack under Uniaxial Tensile and Fatigue Loading
作者:
袁玉全;曾祥国;胡燕飞
1.四川理工学院理学院,四川 自贡 643000; 2.四川大学建筑与环境学院,四川 成都 610065
Author(s):
YUAN YuquanZENG XiangguoHU Yanfei
1.School of Science,Sichuan University of Science & Engineering,Zigong Sichuan 643000,China; 2.College of Architecture and Environment,Sichuan University,Chengdu Sichuan 610065,China
关键词:
分子动力学 中心裂纹 α-Fe 拉伸 疲劳 LAMMPS
Keywords:
molecular dynamics simulation central crack α-Fe tension fatigue LAMMPS
分类号:
O 483
文献标志码:
A
摘要:
采用分子动力学模拟方法研究了含(0 1-1)[011]型中心裂纹的金属α-Fe在拉伸载荷和疲劳载荷作用下裂纹扩展的微观机制.研究结果表明:在拉伸载荷作用下,材料因应力集中导致了由bcc到hcp的相变,裂纹呈现严重钝化扩展现象,整个过程还伴随着层错、孪晶等现象的发生; 在循环载荷作用下时,位错沿滑移面(-2 1 -1)和(2 -1 1)快速发射,从而使得裂尖处应力得以快速释放,疲劳裂纹扩展相当缓慢,裂纹出现止裂现象,整个疲劳加载过程未发现孪晶、相变等现象.
Abstract:
The mechanical behaviors around a crack tip for α-Fe with(01-1)[011] centered pre-crack defect under uniaxial tensile and fatigue loading was studied using molecular dynamics simulation method.The phase transition from bcc to hcp was revealed under uniaxial tensile loading,which induced by stress concentration,and the phenomenons of crack tip blunting,stacking faults and twins were found under tensile loading.While under fatigue loading,the fatigue crack grows very slowly because the quick emission of dislocations along the(-2 1 -1)and(2 -1 1)slip plane release the stress around crack tip in time,and there is no twin and phase transition happen throughout the process of fatigue loading.The results indicate that the mechanism of deformation and failure for α-Fe with crack defect is a complicated process,which is the result that many mechanisms act together,such as dislocation emission,loading way,twin and phase transition,etc.

参考文献/References:

[1] Shackelford J F.Introduction to Materials Science for Engineers [M〗.6th ed.New Jersey:Prentice Hall,2004.
[2] Eigler D M,Schweizer E K.Positioning single atoms with a scanning tunnelling microscope [J].Nature,1990,344(6266):524-526.
[3] Argon A S,Yip S.Molecular dynamics simulation of crack tip processes in alpha-iron and copper [J].Journal of Applied Physics,1983,54(9):4864-4878.
[4] Mullins M.Computer simulation of fracture using long range pair potentials [J].Acta Metallurgica,1984,32(3):381-388.
[5] Dienes G J,Paskin A.Molecular dynamic simulations of crack propagation [J].Journal of Physics and Chemistry of Solids,1987,48(11):1015-1033.
[6] Zhang Yongwei,Wang Ziqiang,Tang Qiheng.Simulation of nucleation and emission of dislocations by molecular-dynamics method [J].Journal of Applied Physics,1995,77(6):2393-2399.
[7] Zhou S J,Lomdahl P S,Voter A F,et al.Three-dimensional fracture via large-scale molecular dynamics [J].Engineering Fracture Mechanics,1998,61(1):173-187.
[8] Komanduri R,Chandrasekaran N,Raff L M.Molecular dynamics(MD)simulation of uniaxial tension of some single-crystal cubic metals at nanolevel [J].International Journal of Mechanical Sciences,2001,43(10):2237-2260.
[9] Kucherov L,Tadmor E B.Twin nucleation mechanisms at a crack tip in an hcp material:Molecular simulation [J].Acta materialia,2007,55(6):2065-2074.
[10] Cheng Shaohuan,Sun C T.Size-dependent fracture toughness of nanoscale structures:a crack-tip stress approach in molecular dynamics [J].Journal of Nanomechanics and Micromechanics,2014,4(4):1-3.
[11] Wu Wenping,Yao Zongzhuan.Sample size dependence of crack-tip microstructure and stress evolutions in single crystal nickel [J].CMES:Computer Modeling in Engineering & Sciences,2013,93(4):235-252.
[12] Chang Winjin,Fang Tehua.Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation [J].Journal of Physics and Chemistry of Solids,2003,64(8):1279-1283.
[13] Nishimura K,Miyazaki N.Molecular dynamics simulation of crack growth under cyclic loading [J].Computational Materials Science,2004,31(3):269-278.
[14] Potirniche G P,Horstemeyer M F,Jelinek B,et al.Fatigue damage in nickel and copper single crystals at nanoscale [J].International Journal of Fatigue,2005,27(10):1179-1185.
[15] Tang Tian,Kim S,Horstemeyer M F.Fatigue crack growth in magnesium single crystals under cyclic loading:Molecular dynamics simulation [J].Computational Materials Science,2010,48(2):426-439.
[16] Tang Tian,Kim S,Jordon J B,et al.Atomistic simulations of fatigue crack growth and the associated fatigue crack tip stress evolution in magnesium single crystals [J].Computational Materials Science,2011,50(10):2977-2986.
[17] Anna Machová,Glenn E Beltz.Ductile-brittle behavior of(0 0 1)
[1 1 0] nano-cracks in bcc iron [J].Materials Science and Engineering A,2004(387/389):414-418.
[18] 吴映飞,王崇愚,郭雅芳.体心立方铁中裂纹扩展的结构演化研究 [J].自然科学进展,2005,15(2):206-211.
[19] 曹莉霞,王崇愚.α-Fe 裂纹的分子动力学研究 [J].物理学报,2007,56(1):413-422.
[20] Finnis M W,Sinclair J E.A simple N-body potential for transition metals [J].Philosophical Magazine A,1984,50(1):45-55.
[21] Uhnáková A,Machov Uhnáková A,Hora P.3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron [J].International Journal of Fatigue,2011,33(9):1182-1188.
[22] Uhnáková A,Pokluda J,Machová A,et al.3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II [J].Computational Materials Science,2012,61(8):12-19.
[23] Uhnáková A,Pokluda J,Machová A,et al.3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III [J].International Journal of Fatigue,2011,33(12):1564-1573.
[24] Plimpton S J.Fast parallel algorithms for short-range molecular dynamics [J].Journal of Computational Physics,1995,117(1):1-19.
[25] 冯端.金属物理学 [M].北京:科学出版社,1999.
[26] Hu S Y,Ludwig M,Kizler P,et al.Atomistic simulations of deformation and fracture of α-Fe [J].Modelling & Simulation in Materials Science & Engineering,1998,6(5):567-586.
[27] Mendelev M,Han S,Srolovitz D,et al.Development of new interatomic potentials appropriate for crystalline and liquid iron [J].Philosophical Magazine,2003,83(35):3977-3994.
[28] Leese J,Lord A E.Elastic stiffness coefficients of single-crystal iron from room temperature to 500℃ [J].Journal of Applied Physics,1968,39(8):3986-3988.
[29] Machová A.Molecular dynamic simulation of microcrack initiation by impact loading [J].Materials Science and Engineering:A,1992,149(2):153-165.
[30] Potirnichea G P,Horstemeyera M F,Jelineka B,et al.Fatigue damage in nickel and copper single crystals at nanoscale [J].International Journal of Fatigue,2005,27(10/11/12):1179-1185.
[31] Kelchner C L,Plimpton S J,Hamilton J C.Dislocation nucleation and defect structure during surface indentation [J].Physical Review B,1998,58(17):11085-11088.
[32] Honeycutt J D,Andersen H C.Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J].Journal of Physical Chemistry,1987,91(19):4950-4963.
[33] Yuan Yuquan,Zeng Xiangguo,Chen Huayan,et al.Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles [J].Journal of the Korean Physical Society,2013,62(11):1645-1651.
[34] Bancroft D,Peterson E L,Minshall S.Polymorphism of iron at high pressure [J].Journal of Applied Physics,2004,27(3):291-298.
[35] Wang F M,Ingalls R.Iron bcc-hcp transition:local structure from X-ray-absorption fine structure [J].Physical Review B,1997,57(10):5647-5654.
[36] Cheung K S,Harrison R J,Yip S.Stress induced martensitic transition in a molecular dynamics model of α-iron [J].Journal of applied physics,1992,71(8):4009-4014.
[37] Nishimura K,Miyazaki N.Molecular dynamics simulation of crack propagation in polycrystalline material [J].CMES- Computer Modeling in Engineering and Sciences,2001,2(2):143-154.
[38] Nishimura K,Miyazaki N.Molecular dynamics simulation of crack growth under cyclic loading [J].Computational materials science,2004,31(3):269-278.

备注/Memo

备注/Memo:
基金项目:国防重点基金(B1520132013-1),四川理工学院人才引进项目(2015RC41,2015RC44)和四川省教育厅科研课题(15ZB0207)资助项目.
更新日期/Last Update: 1900-01-01