[1]吴世枫,简弃非.基于流固耦合的直接虚拟区域法离散δ函数研究[J].江西师范大学学报(自然科学版),2016,40(02):162-167.
 WU Shifeng,JIAN Qifei.The Discrete Delta Function Study of Direct Fictitious Domain Method Based on Fluid-Structure Interaction[J].,2016,40(02):162-167.
点击复制

基于流固耦合的直接虚拟区域法离散δ函数研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年02期
页码:
162-167
栏目:
出版日期:
2016-03-25

文章信息/Info

Title:
The Discrete Delta Function Study of Direct Fictitious Domain Method Based on Fluid-Structure Interaction
作者:
吴世枫;简弃非
1.广东技术师范学院计算机科学系,广东 广州 510665; 2.华南理工大学机械与汽车工程学院,广东 广州 510006
Author(s):
WU ShifengJIAN Qifei
1.Department of Computer Science,Guangdong Polytechnic Normal University,Guangzhou Guangdong 510665,China; 2.College of Mechanical & Automobile Engineering,South China University of Technology,Guangzhou Guangdong 510006,China
关键词:
流固耦合 直接虚拟区域法 离散δ函数 颗粒沉降
Keywords:
fluid-structure interaction direct fictitious domain method discrete delta function free settling of particles
分类号:
O 35
文献标志码:
A
摘要:
研究直接虚拟区域法中欧拉点和拉格朗日点上速度、虚拟力等物理量的交换函数在流固耦合计算中的应用.通过直接虚拟区域法中运用不同类型和收敛阶的离散δ函数,对颗粒在液体中自由沉降的流固耦合问题进行分析,得出了选择直接虚拟区域法中离散δ函数的原则.根据欧拉网格特点选择δh(r)函数和拉格朗日网格特点选择δh(r)函数,率先提出了δh(r)≠δh(r)的新构造方法,使直接虚拟区域法能更加精确和高效地模拟出颗粒在流体中自由沉降这一重要问题,并通过了数值试验论证.
Abstract:
The exchange functions of physical quantities such as velocity,virtual force at the Euler point and Lagrange point are applied to the fluid-structure interaction in direct fictitious domain method in this paper.By using different types and convergence order of the discrete δ functions,fluid-structure interaction problems of sedimentation of a circular particle in liquid are analyzed,and the new method of the discrete δ function is obtained.According to the Euler characteristics of grids select δh(r) function and Lagrange grids select δh(r) function,a new construction method of δh(r)≠δh(r) is proposed,which makes the direct fictitious domain method more accurate and more efficient simulation of particle's sedimentation in liquid,and through the numerical experiments demonstrate.

参考文献/References:

[1] Glowinski R,Pan T W,Pe'riaux J.A fictitious domain method for Dirichlet problems and applications [J].Comp Meth Appl Mech Eng,1994,111(3/4):283-303.
[2] Glowinski R,Pan T W,Hesla T I,et al.A distributed lagrange multiplier/fictitious domain method for particulate flows [J].Int J Multiphase Flow,1999,25(5):755-794.
[3] Glowinski R,Pan T W,Hesla T I,et al.A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:application to particulate flow [J].J Comput Phys,2001,169(2):363-426.
[4] 简弃非,吴昊.基于遗传算法优化的BP神经网络的 PEMFC动态特性仿真研究 [J].江西师范大学学报:自然科学版,2015,39(3):221-229.
[5] Yu Zhaosheng,Shao Xueming.A direct-forcing fictitious domain method for particulate flows [J].Journal of Computational Physics,2007,227(1):292-314.
[6] Shi Yang,Yu Zhaosheng,Shao Xueming.Combination of the direct-forcing fictitious domain method and the sharp interface method for the three-dimensional dielectrophoresis of particles [J].Powder Technology,2011,210(1):52-59.
[7] Peskin C S.Numerical analysis of blood flow in the heart [J].J Comput Phys,1997,25(3):220-252.
[8] Wu Shifeng,Yuan Li.An improved fictitious domain method for simulating sedimenting rigid particle in a viscous fluid [J].Communications in Computer and Information Science,2014,405:450-459.
[9] Wu Shifeng,Yuan Li.A hybrid FD-DEM solver for rigid particles in viscous fluid [J].Computers & Fluids,2015,118:159-166.
[10] Yang Xiaolei,Zhang Xing,Li Zhilin,et al.A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations [J].Journal of Computational Physics,2009,228(20):7821-7836.
[11] Peskin C S.The immersed boundary method [J].Acta Numerica,2001,11:479-517.
[12] Tornberg A K,Engquist B.Numerical approximations of singular source terms in differential equations [J].Journal of Computations Physics,2004,200(2):462-488.
[13] 吕涛,石济民,林振宝.区域分解算法-偏微分方程数值解新技术 [M].北京:科学出版社,1997.
[14] Happel J,Brenner H.Low reynolds number hydrodynamics [M].New York:Prentice-Hall,1965.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(50930005),广东省科技计划( 2014KQNCX175,2013B090600022)和广州市科技计划(201508010045)资助项目.
更新日期/Last Update: 1900-01-01