[1]徐龙玉,万吉湘,王芳贵.关于ZP-内射维数及ZP-平坦维数[J].江西师范大学学报(自然科学版),2016,40(02):200-203.
 XU Longyu,WAN Jixiang,WANG Fanggui.On ZP-Injective Dimensions and ZP-Flat Dimensions[J].,2016,40(02):200-203.
点击复制

关于ZP-内射维数及ZP-平坦维数()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年02期
页码:
200-203
栏目:
出版日期:
2016-03-25

文章信息/Info

Title:
On ZP-Injective Dimensions and ZP-Flat Dimensions
作者:
徐龙玉;万吉湘;王芳贵
1.西南科技大学理学院,四川 绵阳 621010; 2.绵阳师范学院数学与计算机科学学院,四川 绵阳 621000; 3.四川师范大学数学与软件科学学院,四川 成都 610068
Author(s):
XU LongyuWAN JixiangWANG Fanggui
1.College of Science,Southwest University of Science and Technology,Mianyang Sichuan 621010,China; 2.College of Mathematics and Computer Science,Mianyang Normal University,Mianyang Sichuan 621010,China; 3.College of Mathematics and Software Science,Sichuan Normal University,Chengdu Sichuan 610068,China
关键词:
ZP-内射模 ZP-内射维数 ZP-平坦模 ZP-平坦维数
Keywords:
ZP-injective modules ZP-injective dimension ZP-flat modules ZP-flat dimension
分类号:
O 153.3; O 154
文献标志码:
A
摘要:
给出了ZP-内射维数以及ZP-平坦维数的定义,揭示了左ZP-内射维数l.zp.ID(R)=0及右ZP-平坦维数r.zp.FD(R)=0的环,即它们为非奇异环,并给出等价描述.讨论了环R的左ZP-内射维数l.zp.ID(R)≤n以及环R的右ZP-平坦维数r.zp.FD(R)≤n的等价刻画,证明了环R上的模类ZPI若满足单同态的上核封闭且l.zp.ID(R)< 䥺SymboleB@ ,则l.zp.ID(R)=r.zp.FD(R)=l.zp-id(RR),并证明ZP-内射左R-模的商模是ZP-内射模当且仅当模类ZPI满足单同态的上核封闭且l.zp.ID(R)≤1.
Abstract:
The notions of the ZP-injective dimensions and the ZP-flat dimensions are defined.It is shown that a ring R is left nonsingular if and only if l.zp.ID(R)=0 if and only if r.zp.FD(R)=0.Then the equivalent statements of l.zp.ID(R)≤n and r.zp.FD(R)≤n are studied.If ZPI is closed under cokernel of any monomorphism and l.zp.ID(R)<∞,then l.zp.ID(R)=r.zp.FD(R)=l.zp-id(RR).Finally,it is proved that every quotient module of a ZP-injective left R-module is ZP-injective if and only if ZPI is closed under cokernel of any monomorphisms and l.zp.ID(R)≤1.

参考文献/References:

[1] Ding Nanqing,Li Yuanlin,Mao Lixin.J-coherent rings [J].J Algebra Appl,2009,8(2):139-155.
[2] 王芳贵,汪明义,杨立英.交换环上的极大性内射模 [J].四川师范大学学报:自然科学版,2010,3(1):1-9.
[3] 徐龙玉,汪明义.关于零化子凝聚环 [J].四川师范大学学报:自然科学版,2006,29(2):161-165.
[4] Mao Lixin,Ding Nanqing.FP-projective dimensions [J].Comm Algebra,2005,33(4):1153-1170.
[5] Ding Nanqing,Chen Jianlong.Coherent rings with finite self-FP-injective dimension [J].Comm Algebra,1996,24(9):2963-2980.
[6] Chen Jianlong,Ding Nanqing.On n-coherent rings [J].Comm Algebra,1996,24(10):3211-3216.
[7] Gupta R N.On f-injective modules and semihereditary rings [J].Proc Nat Inst Sci,1969,35(1):323-328.
[8] 朱军伟,黄福生,刘新斌.半模余生成子的刻画 [J].江西师范大学学报:自然科学版,2011,35(1):78-80.
[9] 陈幼华,熊涛,祁慧倩.整环上的W-投射模 [J].江西师范大学学报:自然科学版,2011,35(3):305-308.
[10] Fuelberth J D,Teply M L.The singular submodule of a finitely generated module splits off [J].Pacific J Math,1972,40(1):73-82.
[11] 徐龙玉,胡葵,熊涛.关于ZP-内射模 [J].四川师范大学学报:自然科学版,2015,38(3):644-647.
[12] Lam T Y.Lectures on modules and rings [M].New York:Springer-Verlag,1999:156-157.
[13] Boyle A K,Goodearl K R.Rings over which certain modules are injective [J].Pacific J Math,1975,58(1):43-53.
[14] Wisbauer R.Foundations of module and ring theory:a handbook for study and research [M].Amsterdam:Gordon and Breach Science Publishers,1991:82-83.
[15] Enochs E E.A note on absolutely pure modules [J].Canad Math Bull,1976,19(3):361-362.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(11171240)资助项目.
更新日期/Last Update: 1900-01-01