[1]黄 梅,吴根秀,刘邱云,等.一种基于大焦元分解的信任函数逼近方法[J].江西师范大学学报(自然科学版),2016,40(03):285-289.
 HUANG Mei,WU Genxiu,LIU Qiuyun,et al.The Approximation Method of Belief Function Based on Decomposing Large Focal Elements[J].,2016,40(03):285-289.
点击复制

一种基于大焦元分解的信任函数逼近方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年03期
页码:
285-289
栏目:
出版日期:
2016-07-01

文章信息/Info

Title:
The Approximation Method of Belief Function Based on Decomposing Large Focal Elements
作者:
黄 梅吴根秀刘邱云吴 恒毛临川
江西师范大学数学与信息科学学院,江西 南昌 330022
Author(s):
HUANG MeiWU GenxiuLIU QiuyunWU HengMAO Linchuan
College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
D-S证据理论 基本概率赋值 能量函数 平均能量函数
Keywords:
D-S theory of evidence basic probability assignment energy function the average energy function
分类号:
O 236
文献标志码:
A
摘要:
针对证据合成提出一种基于大焦元分解的信任函数逼近方法,首先将基数过大的焦元进行分解,将焦元基数控制在不大于k的范围内,然后再按照改进的能量函数删减焦元,这样不仅减少焦元的个数,也控制了焦元基数,更优化了在证据合成时的计算复杂度,并且试验结果也表明了该方法的有效性.
Abstract:
An improved method of belief function based on decomposing large focal elements is proposed for the theory of evidence.First,by decomposing the focal elements with big cardinality,the cardinality of focal elements are controlled within no more than en focal elements based on the improved energy function are reduced.So the improved method not only reduces the number of focal elements,but also controls the cardinality of focal elements,and optimizes the computational complexity,and the example analysis shows that the method takes on better effectiveness.

参考文献/References:

[1] Dempster A P.Upper and lower probabilities induced by a multivalued mapping [J].Annals of Mathematical Statistics,1967,38(2):325-339.
[2] Gordon J,Shortliffe E H.A method of Managing evidential reasoning in a hierarchical hypothesis space [J].Artificial Intelligence,1985,26(3):323-357.
[3] 苗壮,程咏梅,潘泉,等.快速mass函数收敛 [J].湖南大学学报:自然科学版,2011,38(1):89-92.
[4] 李新德,Dezert J,黄心汉,等.一种快速分层递阶DSmT近似推理融合方法 [J].电子学报,2010,38(11):2566-2572.
[5] 郭强,何友,李新德.一种快速DSmT-DS近似推理融合方法 [J].电子与信息学报,2015,37(9):2040-2046.
[6] Lowrance J D,Garvey T D,Strat T M.A framework for evidential-reasoning system [C]//Kehler Int,Rosenschein S,Filman R,et al.Proceedings of the 5th National Conference of the American Association for Areifical Intelligence(AAAI-86),1986(2):896-903.
[7] Harmanec D.Faithful approximations of belief functions [C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Ka ufmann Publishers,1999:271-278.
[8] Han Deqiang,Dezert J,Han Chongzhao.New basic belief assignment approximations based on optimization [C]//15th International Conference on Information Fusion.Singapore:IEEE,2012:286-293.
[9] 叶清,吴晓平,翟定军.一种基于能量函数的证据合成算法 [J].系统工程与电子技术,2010,32(3):566-569.
[10] 金宏斌,蓝江桥,李鸿飞.基于改进能量函数的证据推理理论近似计算方法 [J].空军雷达学院学报,2012,26(6):427-430.
[11] 邓勇,王栋,李齐,等.一种新的证据冲突分析方法 [J].控制理论与应用,2011,28(6):839-844.
[12] 李建军,吴根秀,张冬梅.一种新的冲突证据合成方法 [J].江西师范大学学报:自然科学版,2007,31(2):122-126.
[13] 蒋雯,彭进业,邓勇,等.一种新的证据冲突表示方法 [J].系统工程与电子技术,2010,32(3):562-565.
[14] Chebbah M,Martin A,Yaghlane B B.Combining partially independent belief functions [J].Decision Support Systems,2015,73:37-46.
[15] 程子成,吴根秀,宋姝婷.基于融合信息熵性质的信任函数概率逼近 [J].江西师范大学学报:自然科学版,2014,38(5):534-538.
[19] Madison M J,Bradshaw L P.The effects of Q-matrix design on classification accuracy in the log-linear cognitive diagnitive diagnosis model [J].Educational and Psychological Measurement,2015,75(3):491-511.
[20] 罗欢,丁树良,汪文义,等.属性不等权重的多级评分属性层级方法 [J].心理学报,2010,42(4):528-538.
[21] 李瑜.多选题认知诊断测验编制及多策略的多选题认知诊断模型的开发 [D].南昌:江西师范大学,2014.
[22] 李瑜,丁树良,唐小娟.多项选择题认知诊断潜能的最大化 [J].心理科学进展,2014,22(5):866-880.
[23] 唐小娟.粗糙集理论在认知诊断中的应用 [D].南昌:江西师范大学,2013.

相似文献/References:

[1]赖邦城,吴根秀.基于信息熵的证据融合方法[J].江西师范大学学报(自然科学版),2012,(05):519.
 LAI Bang-cheng,WU Gen-xiu.The Evidence Combination Method Based on Information Entropy[J].,2012,(03):519.

备注/Memo

备注/Memo:
收稿日期:2015-12-30基金项目:江西省自然科学基金(20151BAB207030)和江西省教育厅科学技术课题(GJJ14244)资助项目.通信作者:吴根秀(1965-),女,江西南丰人,教授,主要从事数据挖掘、不确定性推理、信息融合方面的研究.
更新日期/Last Update: 1900-01-01