[1]张洪涛,熊红梅,凃玲英.一种改进的量子退火算法[J].江西师范大学学报(自然科学版),2016,40(05):473-475.
 ZHANG Hongtao,XIONG Hongmei,TU Lingying.An Improved Quantum Annealing Algorithm[J].,2016,40(05):473-475.
点击复制

一种改进的量子退火算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年05期
页码:
473-475
栏目:
出版日期:
2016-10-01

文章信息/Info

Title:
An Improved Quantum Annealing Algorithm
作者:
张洪涛熊红梅凃玲英
湖北工业大学电气与电子工程学院,湖北 武汉 430068
Author(s):
ZHANG HongtaoXIONG HongmeiTU Lingying
School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan Hubei 430068,China
关键词:
量子退火算法 能量本征态 透射系数 量子绝热定理 优化算法
Keywords:
quantum annealing energy eigen state transmission coefficient quantum adiabatic theorem optimization algorithm
分类号:
TP 306
摘要:
为了进一步提高量子退火算法在优化问题上的计算速度,对量子退火算法如何移动到新解这个问题的方法进行改进,将粒子透射系数引入到量子退火算法中,并通过透射系数来确定是否移动到新解.实验结果表明:通过透射系数确定新解的方法能在更短的计算时间内得到最优解.
Abstract:
In order to enhance the computing speed of quantum annealing algorithm on optimization problems,the method on how to move to a new solution in quantum annealing algorithm has been improved.Transmission coefficient has been introduced into the quantum annealing algorithm,and it will determine whether to move to the new solution.Finally,experimental result tverify that the new method that can obtain the optimal solution in a shorter time.

参考文献/References:

[1] Kirpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated Annealing [J].Science,1983,220(4598):671-680.
[2] Kadowaki T,Hidetoshi N.Quantum annealing in the transverse ising model [J].Physics Review E,1998,58(5):5355-5364.
[3] Lee Y,Berne B J.Global optimization:Quantum thermal annealing with path integral Monte Carlo [J].Journal of Physical Chemistry A,2000,104(1):86-95.
[4] Stella L,Santoro G E,Tosatti E.Optimization by quantum annealing:Lessons from simple cases [J].Physics Review B,2005,72(1):14303-14317.
[5] Stella L,Santoro G E,Tosatti E.Monte Carlo studies of quantum and classical annealing on a double-well [J].Physics Review B,2006,73(14):144302-144316.
[6] Stella L,Santoro G E.Quantum annealing of an ising spinglass by Green’s function Monte Carlo [J].Physics Review E,2007,75(3):36703-036710.
[7] Stella L.Studies of classical and quantum annealing [EB/OL].
[2015-04-09].http://www.sissa.it/cm/thesis/2005/stella.pdf.
[8] 杜卫林,李斌,田宇.量子退火算法研究进展 [J].计算机研究与发展,2008,45(9):1501-1508.
[9] Masayuki O,Hidetoshi N.Quantum annealing:An introduction and new developments [J] Journal of Computational & Theoretical Nanoscience,2011,8(6):963-971.
[10] 陈宏,袁宏宽.量子力学 [M].北京:科学出版社,2014:27-51.
[11] 吴楠,宋芳敏.绝热量子计算 [J].南京邮电大学学报:自然科学版,2011,31(2):19-26.
[12] 文家焱,王国利.绝热量子搜索算法中的纠缠与能量分析 [J].计算机研究与发展,2008,45(l):81-86.
[13] Giuseppe S,Roman M,Erio T,et al.Theory of quantum annealing of an ising spin glass [J].Science,2002,295(5564):2427-2430.
[14] Mark W J,Mohammad A,S Gildert et al.Quantum annealing with manufactured spins [J].Nature,2011,473(7346):194-198.
[15] Arnab D,Bikas C.Quantum annealing and analog quantum computation [J].Reviews of Modern Physics,2008,80(3):1061-1081.

备注/Memo

备注/Memo:
收稿日期:2016-01-09基金项目:湖北省武汉市科技局“十城千辆新动力汽车计划”(2013011801010600)资助项目.作者简介:张洪涛(1963-),男,内蒙古呼和浩特人,教授,博士,主要从事纳米电子技术与量子通信及量子计算的研究.
更新日期/Last Update: 1900-01-01