[1]万树园,王智勇.非自治(q,p)-Laplace方程组周期解的存在性[J].江西师范大学学报(自然科学版),2016,40(05):511-514.
 WAN Shuyuan,WANG Zhiyong.The Existence of Periodic Solution for Nonautonomous Equations with (q,p)-Laplacian[J].,2016,40(05):511-514.
点击复制

非自治(q,p)-Laplace方程组周期解的存在性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年05期
页码:
511-514
栏目:
出版日期:
2016-10-01

文章信息/Info

Title:
The Existence of Periodic Solution for Nonautonomous Equations with (q,p)-Laplacian
作者:
万树园王智勇
南京信息工程大学数学与统计学院,江苏 南京 210044
Author(s):
WAN ShuyuanWANG Zhiyong
College of Mathematics and Statistics,Nanjing University of Information Science & Technology,Nanjing Jiangsu 210044,China
关键词:
周期解(qp)-Laplace方程组 Cerami条件 鞍点定理
Keywords:
periodic solution equations with placian Cerami condition saddle point theorem
分类号:
O 175.12
摘要:
利用临界点理论中的极大极小方法研究了非自治(q,p)-Laplace方程组周期解的存在性,借助分析技巧,在一系列更弱的条件下得到一个新的存在性定理,推广和发展了已有文献中的相关结果.
Abstract:
By using the minimax methods in critical point theory and some analytical techniques,the existence of periodic solution for nonautonomous equations with (q,p)-Laplacian is studied.Under a series of weaker conditions,a new existence theorem is obtained.The theorem extends and improves some results in the known literatures.Key words:periodic solution; equations with (q,p)-Laplacian is studied.Under a series of weaker conditions,a new existence theorem is obtained.The theorem extends and improves some results in the known literatures.

参考文献/References:

[1] Tang Chunlei,Wu Xingping.Notes on periodic solutions of subquadratic second order systems [J].J Math Anal Appl,2003,285(1):8-16.
[2] Bartolo P,Benci V,Fortunato D.Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity [J].Nonlinear Anal,1983,7(9):981-1012.
[3] Xu Bo,Tang Chunlei.Some existence results on periodic solutions of ordinary p-Laplacian systems [J].J Math Anal Appl,2007,333(2):1228-1236.
[4] Zhang Qiongfen,Tang Xianhua.New existence of periodic solutions for second order non-autonomous second-order Hamiltonian systems [J].J Math Anal Appl,2010,369(1):357-367.
[5] Wang Zhiyong,Xiao Jianzhong.On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems [J].Appl Math Lett,2015,40:72-77.
[6] 张申贵.局部超线性常微分p-Laplacian系统的多重周期解 [J].江西师范大学学报:自然科学版,2013,37(3):240-243.
[7] Jiang Qin,Tang Chunlei.Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems [J].J Math Anal Appl,2007,328(1):380-389.
[8] Wang Zhiyong,Zhang Jihui.Periodic solutions of a class of second order non-autonomous Hamiltonian systems [J].Nonlinear Anal,2010,72(12):4480-4487.
[9] Pasca D.Periodic solutions of a class of nonautonomous second order differential systems with (q,p)-Laplacian [J].Bull Belg Math Soc Simon Stevin,2010,17(5):841-851.
[10] Pasca D,Tang Chunlei.Some existence results on periodic solutions of nonautonomous second order differential systems with (q,p)-Laplacian [J].Appl Math Lett,2010,23(3):246-251.
[11] Pasca D,Tang Chunlei.Some existence results on periodic solutions of ordinary (q,p)-Laplacian systems [J].J Appl Math Inform,2011,29(1/2):39-48.
[12] Pasca D,Tang Chunlei.New existence results on periodic solutions of nonautonomous second order differential systems with (q,p)-Laplacian [J].Bull Belg Math Soc Simon Stevin,2012,19(1):19-27.
[13] Pasca D,Wang Zhiyong.New existence results on periodic solutions of nonautonomous second order Hamiltonian systems with (q,p)-Laplacian [J].Bull Belg Math Soc Simon Stevin,2013,20(1):155-166.
[14] 崔德标.二阶非自治(q,p)-Laplace方程组解的存在性 [J].中山大学学报:自然科学版,2013,52(3):45-47.
[15] Mawhin J,Willem M.Critical point theory and Hamiltonian systems [M].New York:Springer-Verlag,1989.

相似文献/References:

[1]汪小明,谢新华.一类具偏差变元的2阶微分方程周期解问题[J].江西师范大学学报(自然科学版),2012,(02):168.
 WANG Xiao-ming,XIE Xin-hua.The Periodic Solution for a Kind of Second Order Differential Equations with Deviating Arguments[J].,2012,(05):168.
[2]林文贤.关于一类具偏差变元的Duffing型方程的周期解注记[J].江西师范大学学报(自然科学版),2012,(05):499.
 LIN Wen-xian.The Notes on Periodic Solution for a Kind of Duffing Equation with Deviating Arguments[J].,2012,(05):499.
[3]李芳,张清业.一类超2次2阶哈密顿系统的无穷多周期解[J].江西师范大学学报(自然科学版),2012,(06):589.
 LI Fang,ZHANG Qing-ye.Infinitely Many Periodic Solutions for a Class of Superquadratic Second Order Hamiltonian Systems[J].,2012,(05):589.
[4]王少敏,杨存基.用最小作用原理研究具有次线性的非线性项2阶系统[J].江西师范大学学报(自然科学版),2013,(03):236.
 WANG Shao-min,YANG Cun-ji.Research Second Order Systems with Sublinear Nonlinearity by the Least Action Principle[J].,2013,(05):236.

备注/Memo

备注/Memo:
收稿日期:2015-12-26基金项目:国家自然科学基金(11571176)资助项目.通信作者:王智勇(1979-),男,江苏无锡人,副教授,博士,主要从事非线性泛函分析的研究.
更新日期/Last Update: 1900-01-01