[1]文晓霞,李风军.一类π-反周期函数的双周期插值问题[J].江西师范大学学报(自然科学版),2017,(01):39-41.
 WEN Xiaoxia,LI Fengjun.The Kind of 2-Periodic Interpolation by π-Anti-Periodic Function[J].,2017,(01):39-41.
点击复制

一类π-反周期函数的双周期插值问题()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年01期
页码:
39-41
栏目:
出版日期:
2017-01-01

文章信息/Info

Title:
The Kind of 2-Periodic Interpolation by π-Anti-Periodic Function
作者:
文晓霞李风军
1.宁夏大学物理与电子电气工程学院,宁夏 银川 750021; 2.宁夏大学数学统计学院,宁夏 银川 750021
Author(s):
WEN XiaoxiaLI Fengjun
1.School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan Ningxia 750021,China; 2.School of Mathematics and Statistice,Ningxia University,Yinchuan Ningxia 750021,China
关键词:
反周期函数 双周期 (0δm)插值 高阶差分
Keywords:
anti-periodic function 2-periodic (0δm)-interpolation higher-order difference
分类号:
O 174
文献标志码:
A
摘要:
讨论了一类反周期函数在等距结点组上的双周期插值问题,结合函数所要满足的插值条件与该类反周期函数所满足的基础分解定理,再利用插值基函数的性质,给出插值问题解存在的充分必要条件,并得到相应条件下解的显式.
Abstract:
A kind of 2-periodic interpolation on a group of equidistant nodes by anti-periodic function is studied.The necessary and sufficient condition of solvability of 2-periodic anti-periodic interpolation problem is obtained through applying decomposition theorem and property of interpolation basic function,a result by interpolation is given at equal-distant nodal point sets,and the solution is obtained if it exists in the end.

参考文献/References:

[1] Sharma A,Szabados J,Varga R S.2-periodic lacunary trigonometric interpolation:the(0,m)case [M]//Butzer P L.Constructive Theory of Function.Sofia:Publ House of Bulg Acad of Sci,1988:420-426.
[2] Sharma A,Sun Xiehua.A 2-periodic trigonometric interpolation problem [J].Approx Theory and Its Appl,1992,8(4):1-16.
[3] Sharma A,Szabados J,Varga R S.Some 2-periodic trigonometric interpolation problems on equidistant nodes [J].Analysis,1991,11(2/3):165-190.
[4] Delvos F J,Knoche L.Lacunary interpolation by antiperiodic trigonometric polynomials [J].BIT,1999,39(3):439-450.
[5] 文晓霞,候象乾.反周期函数的双周期(0m)插值 [J].宁夏大学学报:自然科学版,2004,25(1):8-10.
[6] 文晓霞.一类反周期函数的双周期缺项插值问题 [J].江西师范大学学报:自然科学版,2014,38(1):62-64.
[7] 金玮,候象乾,马泽玲.(0,P(D))三角插值多项式对函数及其导数的同时逼近 [J].华中师范大学学报:自然科学版,2004,38(3):276-279.
[8] 王小刚,张瑞,候象乾.推广的(0,P(D))三角插值 [J].宁夏大学学报:自然科学版,2005,26(3):221-224.
[9] 金玮,候象乾,伏春玲.(0M)三角插值多项式对函数及其导数的同时逼近 [J].华中师范大学学报:自然科学版,2009,43(2):197-200.
[10] 陈文忠,古四毛.修正的Durrmeyer-Bernstain算子的Lp逼近 [J].数学研究与评论,1994,14(1):129-134.
[11] 薛银川.Stamcu-Kantorovic算子的迭代在L空间的逼近 [J].数学研究与评论,1997,17(4):570-572.
[12] 尚增科,盛保怀.某些广义插值在LP空间和LP(R)空间的逼近 [J].数学研究,1997,30(3):253-259.
[13] 赵振宇,候象乾.一类三角插值多项式在Besov空间中逼近 [J].数学研究,2005,38(3):260-264.
[14] 文晓霞.Jackson多项式在广义H?lder度量下的逼近 [J].科技导报,2013,31(20):51-53.
[15] 牛彤彤,吴嘎日迪.两类修正的插值多项式在Orlicz空间的逼近 [J].工程数学学报,2014,31(1):103-111.

相似文献/References:

[1]文晓霞.一类反周期函数的双周期缺项插值问题[J].江西师范大学学报(自然科学版),2014,(01):62.
 WEN Xiao-xia.The Solution of 2-Periodic Lacunary Interpolation by Antiperiodic Function[J].,2014,(01):62.

备注/Memo

备注/Memo:
收稿日期:2016-12-23基金项目:国家自然科学基金(11261042,61662060)资助项目.作者简介:文晓霞(1979-),女,宁夏同心人,副教授,主要从事函数逼近论的研究.E-mail:wen_xx@nxu.edu.cn
更新日期/Last Update: 1900-01-01