[1]李金灿,邹 恩.基于BPSO算法电力系统故障可观的PMU配置[J].江西师范大学学报(自然科学版),2017,(02):122-126.
 LI Jincan,ZOU En.Optimal PMU Placement for Fault Observability of Power System Based on BPSO[J].,2017,(02):122-126.
点击复制

基于BPSO算法电力系统故障可观的PMU配置()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年02期
页码:
122-126
栏目:
出版日期:
2017-03-01

文章信息/Info

Title:
Optimal PMU Placement for Fault Observability of Power System Based on BPSO
作者:
李金灿邹 恩
1.华南农业大学珠江学院,广东 广州 510900; 2.华南农业大学工程学院,广东 广州 510642
Author(s):
LI JincanZOU En
1.Zhujiang College,South China Agricultural University,Guangzhou Guangdang 510900,China; 2.Collegr of Engineering,South China Agricultural University,Guangzhou Guangdang 510642,China
关键词:
PMU最优配置 电力系统 故障可观 线性整数规划 二进制粒子群优化算法
Keywords:
optimal PMU placement power system fault observability integer linear programming(ILP) binary particle swarm optimization(BPSO)
分类号:
TP 311
文献标志码:
A
摘要:
针对电力系统故障可观状态下的PMU最优配置,提出了使用二进制粒子群优化算法(BPSO)进行处理.为了使用最少的PMU数目找到电力系统网络任一支路的故障,首先使用线性整数规划(ILP)对系统进行建模,再将BPSO算法引入进行优化,最后将该算法应用到IEEE-14,30和57节点标准测试系统,其优化过程亦考虑了零注入节点的影响.结果表明:该算法快速有效,适应用电力系统各种问题的优化.
Abstract:
The paper proposed the Binary Particle Swarm Optimization(BPSO)algorithm for optimal placement of phasor measurement units(PMU)to ensure observability under faulted conditions in power systems.The problem is to minimize the number of PMUs in order to locate any fault in a power system.Integer linear programming procedure is used for problem formulation.And then the BPSO algorithm is introduced to solve the problem.The algorithm is implemented on the IEEE-14bus,30-bus and 57-bus standard test systems with and without considering of zero injection buses.The simulation results show that the BPSO algorithm is fast and efficient.It is suitable for optimization problems of power systems.

参考文献/References:

[1] Novosel D.Phasor measure application study:final project repor [EB/OL].
[2016-09-17].http://uc-ciee.org/images/downloadable_content/electric_grid/PMTA_Final_Report.pdf.
[2] Martin K,Carroll J.Phasing in the Technology [J].Power and Energy Magazine,2008,6(5):24-33.
[3] 杨明海,王成山.电力系统PMU优化配置方法综述 [J].电力系统及其自动化学报,2007,19(2):86-92.
[4] 彭疆南,孙元章,王海风,等.考虑系统完全可观测性的PMU最优配置方法 [J].电力系统自动化,2003,27(4):10-16.
[5] Manousakis N M,Korres G N,Georgilakis P S.Taxonomy of PMU placement methodologies [J].IEEE Transactions on Power Systems,2012,27(2):1070-1077.
[6] Xu Bei,Abur A.Observability analysis and measurement placement for systems with PMUs [J].Power Systems Conference and Exposition,2004(2):943-946.
[7] Gou Bei.Generalized integer linear programming formulation for optimal PMU placement [J].IEEE Transactions on Power Systems,2008,23(3):1099-1104.
[8] Dua D,Damphare S,Gajbhiye R,et al.Optimal multistage scheduling of PMU placement:an ILP approach [J].IEEE Transactions on Power Delivery,2008,23(4):1812-1820.
[9] Enshaee A,Hooshmand R A,Fesharaki F H.A new method for optimal placement of phasor measurement units to maintain full network observability under various contingencies [J].Electric Power Systems Research,2012,89:1-10.
[10] 程涛,黄彦全,申铁,等.遗传算法在PMU优化配置中的应用 [J].电力系统及其自动化学报,2009,21(1):48-51.
[11] 刘斌,黄纯,李波,等.改进二进制粒子群算法在PMU优化配置中的应用 [J].电力系统及其自动化学报,2010,22(2):5-10.
[12] 兰华,万旺经,王韵然,等.基于模拟退火混合遗传算法的电力系统相量测量装置优化配置 [J].电网技术,2007,31(S2):114-117.
[13] 袁澎,艾芊,赵媛媛,等.基于改进的遗传-模拟退火算法和误差度分析原理的PMU多目标优化配置[J].中国电机工程学报,2014,34(13):2178-2187.
[14] Lien K P,Liu C W,Yu C S,et al.Transmission network fault location observability with minimal PMU placement [J].IEEE Transactions on Power Delivery,2006,21(3):1128-1136.
[15] Geramian S S,Abayne H A,Mazlumi K.Determination of optimal PMU placement for fault location using genetic algorithm [J].13th International Conference on Harmonics and Quality of Power,2008:1-5.
[16] Batchu Rajasekhar,Ashwani Kumar Chandel,Basetti Vedik.Differential evolution based optimal PMU placement for fault observability of power system [J].Engineering and Systems(SCES),2013:1-5.
[17] Kavasseri R,Srinivasan S K.Joint placement of phasor and conventional power flow measurements for fault observability of power systems [J].Generation,Transmission & Distribution,IET,2011,5(10):1019-1024.
[18] Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [J].Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.Orlando,1997,5:4104-4108.
[19] Pokharel S S,Brahma S.Optimal PMU placement for fault location in a power system [J].North American Power Symposium(NAPS),2009(1):1-5.
[20] del Valle Y,Venayagamoorthy G,Mohagheghi K S,et al.Particle swarm optimization:basic concepts,variants and applications in power systems [J].IEEE Transactions on Evolutionary Computation,2008,12(2):171-195.
[21] 陈建华,李先允,邓东华,等.粒子群优化算法在电力系统中的应用综述 [J].继电器,2007,35(23):77-84.
[22] 彭春华.基于免疫BPSO算法与拓扑可观性的PMU最优配置 [J].电工技术学报,2008,23(6):119-124.
[23] 方伟,孙俊,须文波,等.基于微分进化算子的量子粒子群优化算法及应用 [J].系统仿真学报,2008,20(24):6740-6744.
[24] Kennedy J,Eberhart R C.Particle swarm optimization [J].Proceedings of the 1995 IEEE International Conference on Neural Networks,1995,4:1942-1948.

备注/Memo

备注/Memo:
收稿日期:2016-12-21基金项目:广东省自然科学基金(S2013040016144)资助项目.作者简介:李金灿(1983-),男,广东清远人,讲师,主要从事电力系统优化和自动化控制系统的研究.E-mail:8525434@qq.com通信作者:邹 恩(1956-),女,湖南株洲人,教授,博士,主要从事复杂控制系统的优化研究.E-mail:309083693@qq.com
更新日期/Last Update: 1900-01-01