[1]谢冬明,周国宏,陈亚云,等.鄱阳湖湿地泗洲头洲滩浅层土壤氮素的时空特征[J].江西师范大学学报(自然科学版),2017,(02):160-167.
 XIE Dongming,ZHOU Guohong,CHEN Yayun,et al.The Temporal-Spatial Characteristics for N in Surface Soil in Sizhoutou Marshland of Poyang Lake Wetlands[J].,2017,(02):160-167.
点击复制

鄱阳湖湿地泗洲头洲滩浅层土壤氮素的时空特征()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年02期
页码:
160-167
栏目:
出版日期:
2017-03-01

文章信息/Info

Title:
The Temporal-Spatial Characteristics for N in Surface Soil in Sizhoutou Marshland of Poyang Lake Wetlands
作者:
谢冬明周国宏陈亚云周杨明贾俊松熊晓龙余明泉
1.江西科技师范大学旅游学院,江西 南昌 330038; 2.江西师范大学地理与环境学院,江西 南昌 330022; 3.江西科技师范大学生命学院,江西 南昌 330038
Author(s):
XIE DongmingZHOU GuohongCHEN YayunZHOU YangmingJIA JunsongXIONG XiaolongYU Mingquan
1.School of Tourism,Jiangxi Science & Technology Normal University,Nanchang Jiangxi 330038,China; 2.School of Geography and Environment,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 3.School of Life,Jiangxi Science & Technology Normal
关键词:
土壤氮素 空间分异 洲滩湿地 鄱阳湖湿地
Keywords:
soil nitrogen spatial characteristic marshland Poyang Lake wetlands
分类号:
X 142
文献标志码:
A
摘要:
湿地是全球氮循环的N源、N汇和N转化器,自然湿地氮的研究对于揭示生态系统氮循环的规律具有重要意义.以鄱阳湖湿地泗洲头为研究区域,根据湿地海拔高程梯度(10~17 m)采取表层土壤0~20 cm土层样品,分析了土壤全氮、铵态氮、硝态氮、碱解氮的空间分布特征.结果表明:鄱阳湖湿地泗洲头表层土壤氮含量空间分布较为复杂,0~10 cm土层的氮含量和10~20 cm土层的氮含量呈现相似的梯度特征,0~10 cm土层的土壤氮含量要高于10~20 cm土层的土壤氮含量,其中0~10 cm土层和10~20 cm土层的全氮、铵态氮、碱解氮含量最高均值出现在高程13~14 m,硝态氮最高均值出现在高程16~17 m.利用SPSS双变量中的pearson相关性检验表层土壤全氮、铵态氮、硝态氮、碱解氮与地上生物量、土壤pH值、土壤含水量、年均淹水时间、高程之间的相关性,结果表明:土壤氮素与地上生物量的相关性在统计学意义上最为显著,而与其他环境因素的相关性并不明显.这反映了鄱阳湖泗洲头表层土壤氮含量的空间分布与积累过程受干扰的因素比较复杂.
Abstract:
Wetland was a N source,N pool,N convertor in global N cycle,and it help probe the rhythm of N cycle of ecosystem as an important significant.The marshland of Poyang Lake was an example to analyze the soil nitrogen(including total nitrogen(TN),ammonium nitrogen(NH+4-N),nitrate nitrogen(NO-3-N),alkali-hydrolyzable nitrogen(AHN))in surface soil with a depth 0-20 cm to be sampled from the elevation 10 m to 17 m.The result explained spatial characteristic of soil nitrogen was similar in 0-10 cm and 10-20 cm.The average highest value of TN,NH+4-N,AHN was in elevation 13-14 m,and The average highest value of NO-3-N was in elevation 16-17 m..The correlation of N,overground biomass,inundation period,PH,moisture content and elevation was analyzed according to Pearson correlation,the correlation between TN,NH+4-N,NO-3-N,AHN and environmental condition was no significant,however,overground biomass is significant correlation with N.The correlation between N and environmental condition explained the complex of spatial distribution and circulation mechanism in N in Poyang Lake wetlands.

参考文献/References:

[1] Deegan L A,Johnson D S,Warren R S,et al.Coastal eutrophication as a driver of salt marsh loss [J].Nature,2012,490(7420):388-392.
[2] Hankin S L,Weilhoefer C L,Kaldy J E,et al.Sediment diatom species and community response to nitrogen addition in Oregon(USA)estuarine tidal wetlands [J].Wetland,2012,32(6):1023-1031.
[3] Tilman D,Fargione J,Wolff B,et al.Forecasting agriculturally driven global environmental change [J].Science,2001,292(5515):281-284.
[4] Townsend A R,Howarth R W,Bazzaz F A,et al.Human health effects of a changing global nitrogen cycle [J].Front Ecol Environ,2003,1(5):240-246.
[5] Canfield D E,Glazer A N,Falkowski P G.The evolution and future of Earth’s nitrogen cycle [J].Science,2010,330(6001):192-196.
[6] Martina J P,von Ende C N.Increased spatial dominance in high nitrogen,saturated soil due to clonal architecture plasticity of the invasive wetland plant,Phalaris arundinacea [J].Plant Ecol,2013,214(12):1443-1453.
[7] 周念清,赵珊,沈新平.天然湿地演替带氮循环研究进展 [J].科学通报,2014,59:1688-1699.
[8] Fellman J B,D’Amore D V.Nitrogen and phosphorus mineralization in three wetland types in southeast Alaska,USA [J].Wetlands,2007,27(1):44-53.
[9] Nakagawa Y,Nakamura T,Yamada H,et al.Changes in nitrogen and base cation concentrations in soil water due to the tree cutting in a wetland alder forest in the Kushiro Wetland,northern Japan [J].Limnology,2012,13(1):27-36.
[10] Martina J P,von Ende C N.Increased spatial dominance in high nitrogen,saturated soil due to clonal architecture plasticity of the invasive wetland plant,Phalaris arundinacea [J].Plant Ecol,2013,214:1443-1453.
[11] Matamala R,Drake B G.The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay[ J].Plant and Soil,1999,210(5):93-101.
[12] Dick D A,Gilliam F S.Spatial heterogeneity and dependence of soils and herbaceous plant communities in adjacent seasonal wetland and pasture sites [J].Wetlands,2007,27(4):951-963.
[13] Marotta H,Bento L,Esteves F de A,et al.Whole ecosystem evidence of eutrophication enhancement by wetland dredging in a shallow tropical lake [J].Estuaries and Coasts,2009,32(4):654- 660.
[14] Xie Dongming,Jin Guohua,Zhou Yangming,et al.Ecological function zoning for Poyang Lake wetland:a RAMSAR site in China [J].Water Policy,2013,15:922-935.
[15] 葛刚,徐燕花,赵磊,等.鄱阳湖典型湿地土壤有机质及氮素空间分布特征 [J].长江流域资源与环境,2010,19(6):619-622.
[16] 聂发辉,李娟花,刘占孟.鄱阳湖湿地土壤对氨氮的吸附性能研究 [J].华东交通大学学报,2015,32(2):136-142.
[17] Wang Xiaolong,Han Jinyi,Xu Ligang,et al.Soil characteristics in relation to vegetation communities in the wetlands of Poyang Lake,China [J].Wetlands,2014,34(4):829-839.
[18] Xiang Sulin,Nie Fahui,Wu Daishe,et al.Nitrogen distribution and diffusive fluxes in sediment interstitial water of Poyang Lake [J].Environ Earth Sci,2015,74(3):2609-2615.
[19] Yang Zhiping,Wang Linqing,Liang Tao,et al.Nitrogen distribution and ammonia release from the overlying water and sediments of Poyang Lake,China [J].Environ Earth Sci,2015,74(1):771-778.
[20] 谢冬明,郑鹏,王丹寅,等.鄱阳湖湿地水位变化的景观响应 [J].生态学报,2011,3(5):1269-1276.
[21] 鄱阳湖研究编委会.鄱阳湖研究 [M].上海:上海科学技术出版社,1988.
[22] 刘兴中,叶居新.江西湿地 [M].北京:中国林业出版社,2000.
[23] 江西省水文局.江西水文 [M].武汉:长江出版社,2007.
[24] 王晓鸿,鄢帮有,吴国琛.山江湖工程 [M].北京:科学出版社,2006.
[25] 鲁如坤.土壤农业化学分析方法 [M].北京:中国农业科技出版社,2000.
[26] 刘光崧.土壤理化分析与剖面描述(中国生态系统研究网路观测与分析标准方法)[M].北京:中国标准出版社,1996.
[27] 中科学院南京土壤研究所.土壤理化分析 [M].上海:上海科技出版社,1978.
[28] 白军红,邓伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究:以月亮泡水陆交错带为例 [J].环境科学学报,2002,22(3):343-348.
[29] 谭波.三峡库区消落带湿地土壤碳氮的分布研究 [D].重庆:西南大学,2011.
[30] 王维奇,仝川,贾瑞霞,等.不同淹水频率下湿地土壤碳氮磷生态化学计量学特征 [J].水土保持学报,2010,24(3):238-242.
[31] 付姗,吴琴,尧波,等.南矶湿地土壤碳、氮、磷化学计量比沿水位梯度的分布 [J].湿地科学,2015,13(3):374-380.
[32] Sleutel S,Moeskops P,Huybrechts W,et al.Modeling soil moisture effects on net nitrogen mineralization in loamy wetland soils [J].Wetlands,2008,28(3):724-734.
[33] 张萌,倪乐意,徐军,等.鄱阳湖草滩湿地植物群落响应水位变化的周年动态特征分析 [J].环境科学研究,2013,26(10):1057-1063.
[34] 胡振鹏,葛刚,刘成林,等.鄱阳湖湿地植物生态系统结构及湖水位对其影响研究 [J].长江流域资源与环境,2010,19(6):597-605.
[35] Xie Dongming,Zhou Yangming,Jin Guohua,et al.The water quality and its pollution sources in Poyang Lake wetlands:A Ramsar site in China [J].Material Science and Environmental Engineering-Chen(Ed),2015:649-654.

备注/Memo

备注/Memo:
收稿日期:2016-11-28基金项目:国家自然科学基金(31360120,41561105,71473113),江西省自然科学基金(20132BAB203030),江西省科技支撑计划(20151BBG70014),江西省教育厅科技项目(GJJ150794),江西省对外科技合作(20151BDH80022)和江西科技师范大学青年拔尖人才(2015QNBJRC008)联合资助项目.作者简介:谢冬明(1977-),男,江西萍乡人,副教授,博士,主要从事土地资源环境研究.E-mail:xdm0791@126
更新日期/Last Update: 1900-01-01