[1]詹沛达,丁树良,王立君.多分属性层级结构下引入逻辑约束的理想掌握模式[J].江西师范大学学报(自然科学版),2017,(03):289-295.
 ZHAN Peida,DING Shuliang,WANG Lijun.The Ideal Mastery Pattern for Polytomous Attributes with Hierarchical Structure Incorporating Mastery Level Restriction[J].,2017,(03):289-295.
点击复制

多分属性层级结构下引入逻辑约束的理想掌握模式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年03期
页码:
289-295
栏目:
出版日期:
2017-05-01

文章信息/Info

Title:
The Ideal Mastery Pattern for Polytomous Attributes with Hierarchical Structure Incorporating Mastery Level Restriction
作者:
詹沛达丁树良王立君
1.北京师范大学中国基础教育质量监测协同创新中心,北京 100875; 2.江西师范大学计算机信息工程学院,江西 南昌 330022; 3.浙江师范大学教师教育学院心理系,浙江 金华 321004
Author(s):
ZHAN PeidaDING ShuliangWANG Lijun
1.Collaborative Innovation Center of Assessment Toward Basic Education Quality,Beijing Normal University,Beijing 100875,China; 2.College of Computer Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 3.Department of Psychol
关键词:
认知诊断 多分认知属性 多分Q矩阵 多分可达矩阵 Q矩阵 属性层级结构
Keywords:
cognitive diagnosis polytomous attributes polytomous Q matrix polytomous reachability matrix Q matrix attributes hierarchical structure
分类号:
B 841.7
文献标志码:
A
摘要:
多分属性比传统的2分属性提供更多更详细的诊断反馈信息,具有广阔的应用前景.在多分属性情境下,当属性之间存在层级结构时,会出现原2分属性情境下不存在的逻辑问题:如果被试仅低程度地掌握了父属性,那么他是否还有可能高程度地掌握子属性?从逻辑上讲,这种“父属性掌握程度低而子属性掌握程度高”的发展情况并不具有普适性.对此,该文首先在多分属性情境下,基于现有的计算理想掌握模式的方法提出了满足“属性掌握水平约束假设”的理想掌握模式计算方法.然后,通过模拟研究说明该逻辑约束的使用方法及忽略该逻辑约束可能对诊断结果带来的危害.
Abstract:
The polytomous attributes,particularly those defined as part of the test development process,can provide additional diagnostic information.When polytomous attributes follow a hierarchical structure,a latent logical problem will emerge,which is if a student has only acquired the low level of a father attribute(i.e.,pre-requisite attribute),will he acquire the high level of the son attribute? This situation is uncommon in reality.In terms of logical,the process of learning generally proceeds sequentially,so a good mastery of one attribute must base on a good enough pattern prepared for the pre-requisite attribute.Ideal mastery pattern(IMP)included the all possible mastery pattern for students within an assessment.Unfortunately,the existing calculation for IMP from the polytoumous reachability matrix and the polytomous reduced Q matrix ignored the logical problem above-mentioned.Then there will be some students be classified into illogical attribute pattern,such as the(122)and(112)in linear hierarchical structure.Aimed at this problem,a logical restraint of IMP for polytomous attributes is proposed,i.e.restrict the mastery level of father attribute is higher or equal to the son attribute.A simulation study was given to demonstrate applications and implications of the mastery level restriction.Results show that ignoring the mastery level restraint would result in worse model-data fit and worse attribute(pattern)correct classification rate,when the response data was generated from true attributes that followed the mastery level restraint.

参考文献/References:

[1] Yang Xiangdong,Embretson S E.Construct validity and cognitive diagnostic assessment [A].Gierl J P L M.Cognitive diagnostic assessment for education:theory and applications [C].Cambridge,UK:Cambridge University Press,2007:119-145.
[2] Tatsuoka K K.Rule space:an approach for dealing with misconceptions based on item response theory [J].Journal of Educational Measurement,1983(20):345-354.
[3] Tatsuoka K K.A probabilistic model for dianosing misconceptions by the pattern classification approach [J].Journal of Educational and Behavioral Acquisition,1985(10):453-488.
[4] Karelitz T M.Ordered category attribute coding framework for cognitive assessments [D].Urbana:University of Illinois at Urbana-Champaign,2004:44-67.
[5] 詹沛达,边玉芳,王立君.重参数化的多分属性诊断分类模型及其判准率影响因素 [J].心理学报,2016(48):318-330.
[6] Chen Jinsong,de la Torre J.A general cognitive diagnosis model for expert-defined polytoumous attributes [J].Applied Psychological Measurement,2013(37):417-437.
[7] Leighton J P,Gierl M J,Hunka S M.The attribute hierarchy method for cognitive assessment:a variation on Tatsuoka’s rule-space approach [J].Journal of Educational Measurement,2004(41):205-237.
[8] 杨淑群,蔡声镇,丁树良,等.求解简化Q矩阵的扩张算法 [J].兰州大学学报:自然科学版,2008(3):87-91.
[9] Ding Shuliang,Luo Fen,Cai Yan,et al.Complement to tatsuoka’s Q matrix Theory [C].Tokyo:Universal Academy Press,2008:417-424.
[10] 涂冬波,蔡艳,丁树良.认知诊断理论、方法与应用 [M].北京:北京师范大学出版社,2012:1-30.
[11] Sun Jianan,Xin Tao,Zhang Shumei,et al.A polytomous extension of the generalized distance discriminating method [J].Applied Psychological Measurement,2013(37):503-521.
[12] 丁树良,罗芬,汪文义,等.0-1和多值可达矩阵的性质及应用 [J].江西师范大学学报:自然科学版,2015,39(1):64-68.
[13] Jordan N C,Kaplan D,Oláh L,et al.Number sense growth in kindergarten:a longitudinal investigation of children at risk for mathematics difficulties [J].Child Development,2006(77):153-175.
[14] 周欣,王滨.4~5岁儿童对书面数符号的表征和理解能力的发展 [J].心理科学,2004,27(5):1132-1136.
[15] 戴佳毅,王滨.4~6岁幼儿排序能力发展特点的初步研究 [J].幼儿教育:教育科学,2007(10):37-40.
[16] 张丽锦,吴南.4、5岁儿童一般语言能力和心理理论关系的纵向研究 [J].心理学报,2004,42(12):1166-1174.
[17] Tardif T,Wing-Chen So C,Kaciroti N.Language and false belief:evidence for general,not specific,effects in Cantonese-speaking preschoolers [J].Developmental Psychology,2007,43(2):318-340.

相似文献/References:

[1]李娟,丁树良,罗芬.基于等级反应模型的广义距离判别法[J].江西师范大学学报(自然科学版),2012,(06):636.
 HU Hai,GAN Deng-wen,WANG Wen-yi,et al.The Generalized Distance Discrimination Based on Graded Response Model[J].,2012,(03):636.
[2]丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用[J].江西师范大学学报(自然科学版),2013,(05):441.
 DING Shu-liang,LUO Fen.An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis[J].,2013,(03):441.
[3]丁树良,汪文义,罗芬.多级评分认知诊断测验蓝图的设计——根树型结构[J].江西师范大学学报(自然科学版),2014,(02):111.
 DING Shu-liang,WANG Wen-yi,LUO Fen.Design of Polytomous Cognitively Diagnostic Test Blueprint——For the Rooted Tree Type[J].,2014,(03):111.
[4]丁树良,罗芬,汪文义.多级评分认知诊断测验蓝图的设计——独立型和收敛型结构[J].江西师范大学学报(自然科学版),2014,(03):265.
 DING Shu-liang,LUO Fen,WANG Wen-yi.Design of Polytomous Cognitively Diagnostic Test Blueprint---For the Independent and the Rhombus Attribute Hierarchies[J].,2014,(03):265.
[5]艾国金,甘登文,丁树良,等.不定长认知诊断计算机化自适应测验终止规则研究[J].江西师范大学学报(自然科学版),2014,(05):441.
 AI Guo-jin,GAN Deng-wen,DING Shu-liang,et al.Research on Variable-Length Termination Rules for Computerized Adaptive Testing with Cognitive Diagnosis[J].,2014,(03):441.
[6]祝玉芳,王黎华,丁树良,等.多策略的多级评分认知诊断方法的开发[J].江西师范大学学报(自然科学版),2015,(04):371.
 ZHU Yufang,WANG Lihua,DING Shuliang,et al.The Development of Multiple-Strategies Cognitive Diagnosis with Polytomous Response[J].,2015,(03):371.
[7]艾国金,甘登文,丁树良.计算机化自适应诊断测验双重约束变长终止规则[J].江西师范大学学报(自然科学版),2015,(05):449.
 AI Guojin,GAN Dengwen,DING Shuliang.The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing[J].,2015,(03):449.
[8]祝玉芳.GDD-P在进位计数制中的应用[J].江西师范大学学报(自然科学版),2015,(05):453.
 ZHU Yufang.An Application of the GDD-P in Carrying Notation[J].,2015,(03):453.

备注/Memo

备注/Memo:
收稿日期:2017-01-26基金项目:全国教育科学规划教育部重点课题(DBA150236)和国家自然科学基金(31360237,31500909,31300876,31160203,31100756,30860084,11401271)资助项目.通信作者:王立君(1968-),女,辽宁大连人,副教授,博士,主要从事学科能力测量、青少年社会性发展与积极心理学等方面的研究.E-mail:franrwlj@163.com
更新日期/Last Update: 1900-01-01