[1]徐芳萍,王喜燕,杨 辉,等.基于遗传算法优化BP神经网络的稀土萃取过程建模[J].江西师范大学学报(自然科学版),2017,(03):314-318.
 XU Fangping,WANG Xiyan,YANG Hui,et al.The Modeling of the Rare-Earth Extractive and Separate Process Based on Genetic Algorithm and BP Neural Network[J].,2017,(03):314-318.
点击复制

基于遗传算法优化BP神经网络的稀土萃取过程建模()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年03期
页码:
314-318
栏目:
出版日期:
2017-05-01

文章信息/Info

Title:
The Modeling of the Rare-Earth Extractive and Separate Process Based on Genetic Algorithm and BP Neural Network
作者:
徐芳萍王喜燕杨 辉何丽娟
1.华东交通大学电气与自动化工程学院,江西省先进控制与优化重点实验室,江西 南昌 330013; 2.郑州铁路职业技术学院,河南 郑州 450052
Author(s):
XU FangpingWANG XiyanYANG HuiHE Lijuan
1.College of Electrical and Electronic,East China Jiaotong University,Key Laboratory of Advanced Control & Optimization of Jiangxi Province,Nanchang Jiangxi 330013,China; 2.Zhengzhou Railway Vocational & Technical College, Zhengzhou Henan 450052
关键词:
遗传算法 CePr/Nd萃取分离 BP神经网络
Keywords:
genetic algorithm the extractive and separate of CePr/Nd BP neural network
分类号:
TP 273
文献标志码:
A
摘要:
针对稀土萃取分离过程工艺复杂/难以对其建立精确的过程控制模型,提出了稀土萃取过程遗传算法优化BP神经网络建模方法.根据现场工艺参数,确定稀土萃取过程级数和各进料设定流量; 运用串级萃取理论对稀土萃取过程产生各级组分含量数据分析; 应用Matlab7.10数学软件进行分析计算,为确保2端出口产品最终达到所需纯度对过程进行研究分析,并以CePr/Nd萃取过程为例进行建模研究,对实际生产过程工艺操作控制具有一定的借鉴意义.
Abstract:
To solve the difficulty of rare earth separation and establishing precise process control model of the rare earth extraction process,the genetic algorithm-BP neural network modeling method of the rare earth extraction process is proposed.Based on the process parameters of the site,the stages and the flow-rate of each feed of the rare earth extraction process are determined.According to the countercurrent extraction theory,the component content data at all levels of rare earth extraction process is analyzed.Through the analysis and calculation by using Matlab7.10,the extraction process is studied to ensure that both end of export products eventually can reach the required purity.For the example of the modeling studies on the CePr/Nd extraction process,it shows the certain reference significance to process operation control in the actual production process.

参考文献/References:

[1]Yang Hui,Tan Minghao,Chai Tianyou.Neural networks based component content soft-sensor in countercurrent rare-earth extraction [J].Journal of Rare Earth 2003,21(6):691-696.
[2]Yang Hui,Chai Tianyou.Component content soft-sensor based on neural networks in rare-earth countercurrent extraction process [J].Acta Automatica Sinica,2006,32(4):489-495.
[3] 柴天佑,杨辉.稀土萃取分离过程自动控制研究现状及发展趋势 [J].中国稀土学报,2004,22(4):427-433.
[4] 徐光宪.稀土 [M].北京:冶金工业出版社,2012.
[5] 贾文君,柴天佑.稀土串级萃取分离过程的双线性模型及其参数辨识 [J].控制理论与应用,2006,23(5):717-723.
[6] 贾文君,柴天佑.稀土串级萃取分离过程组分含量的多模型软测量 [J].控制理论与应用,2007,24(4):569-573.
[7] 贾文君,柴天佑.稀土萃取过程建模与智能优化控制方法的研究 [J].控制理论与应用,2007,24:304-307.
[8] 杨辉,朱凡,陆荣秀,等.基于ANFIS模型的Pr/Nd 萃取过程预测控制 [J].化工学报,2016,67(3):982-990.
[9] 杨辉,何丽娟,张志勇.Multiple-model predictive control for component content of CePr/Nd countercurrent extraction process [J].Information Sciences,2016,360:244-255.
[10] 李松,刘力军,解永乐.遗传优化BP神经网络的短时交通流混沌预测 [J].控制与决策,2011,26(10):1581-1581.
[11] 马廉洁,巩亚东,于爱兵,等.基于BP和GA的微晶玻璃点磨削表面硬度数值拟合[J].东北大学学报:自然科学版,2016,37(2):213-217.
[12] 彭基伟,吕文华,行鸿彦,等,基于改进GA-BP神经网络的温度传感器的温度补偿 [J].仪器仪表学报,2013,34(1):153-159.
[13] 邓召学,郑玲,郭敏敏,等,基于遗传BP神经网络的磁流变悬置模型辨识 [J]电子科技大学学报,2014,43(6):955-960.
[14] 贾文君,柴天佑.稀土串级萃取分离过程组分含量的多模型软测量 [J].控制理论与应用,2007,24(4):569-573.
[15] 史忠植.神经网络 [M].北京:高等教育出版社,2009:1-6.
[16] 傅荟璇,赵红.Matlab神经网络应用设计 [M].北京:机械工业出版社,2010:153-163.
[17] 王小川,史峰,郁磊,等,Matlab神经网络43个案例分析 [M].北京:北京航空航天大学出版社,2013:20-30.
[18] 田海,郭智恒,李兰云.稀土萃取分离过程软测量方法的研究 [J].中国稀土学报,2015(2):201-205.
[19] 杨辉,徐芳萍,陆荣秀,等.稀土萃取过程组分含量分布控制方法 [J].Chinese Journal of Chemical Engineering,2015(1):192-198.

相似文献/References:

[1]庄景明,彭昕昀.基于改进遗传算法的新鲜农产品配送路线优化研究[J].江西师范大学学报(自然科学版),2012,(04):399.
 ZHUANG Jing-ming,PENG Xin-yun.The Research on the Optimization of Fresh Products? Delivery Routes Based on the Improved Genetic Algorithm[J].,2012,(03):399.
[2]周莉,王珏,周勇.遗传算法在试卷生成中的应用[J].江西师范大学学报(自然科学版),2013,(06):579.
 ZHOU Li,WANG Jue,ZHOU Yong.Application of Test Paper Generation Based on Genetic Algorithm[J].,2013,(03):579.

备注/Memo

备注/Memo:
收稿日期:2016-11-09基金项目:国家“973”(2014CB360502)计划,江西省教育厅项目(GJJ160524)和华东交通大学校立科研基金(14DQ03)资助项目.通信作者:杨 辉(1965-),男,江西高安人,教授,博士,主要从事复杂工业工程建模与优化控制的研究.E-mail:yhshuo@263.net
更新日期/Last Update: 1900-01-01