[1]赵丹,刘书武,彭信文,等.电纺自支撑空穴硅碳纳米纤维在高性能锂离子电池阳极材料中的应用[J].江西师范大学学报(自然科学版),2014,(03):290-294.
 ZHAO Dan,LIU Shu-wu,PENG Xin-wen,et al.The Preparation of Electrospun Self-Supporting Silicon-Containing Hole Carbon Nanofibers and Their Application in High-Performance Lithium-Ion Battery Anode Materials[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(03):290-294.
点击复制

电纺自支撑空穴硅碳纳米纤维在高性能锂离子电池阳极材料中的应用()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年03期
页码:
290-294
栏目:
出版日期:
2014-06-30

文章信息/Info

Title:
The Preparation of Electrospun Self-Supporting Silicon-Containing Hole Carbon Nanofibers and Their Application in High-Performance Lithium-Ion Battery Anode Materials
作者:
赵丹;刘书武;彭信文;胡唤;侯豪情
江西师范大学化学化工学院,江西 南昌,330022
Author(s):
ZHAO Dan;LIU Shu-wu;PENG Xin-wen;HU Huan;HOU Hao-qing
关键词:
锂离子电池阳极硅碳材料静电纺丝空穴结构
Keywords:
lithium-ion batteryanodesilicon carbideelectrospinninghole structure
分类号:
TM912
文献标志码:
A
摘要:
硅纳米颗粒( SiNPs)加入到聚丙烯腈( PAN)/DMF溶液中混合均匀,通过静电纺丝、预氧化及碳化过程制备得到包含SiNPs的碳纤维膜( CNFs),然后经过HF酸处理形成自支撑空穴状硅碳纳米纤维膜( H-Si-CNFs),直接用作锂离子电池的阳极材料。通过SEM、TEM和XRD等对复合材料的形貌、结构和组成进行表征分析,并运用充放电测试仪对电池循环性能以及储能机理进行研究。结果表明这种H-Si-CNFs电极具有良好的循环性能,其中含10;硅粒子的 H-Si-CNFs在100 mA·g-1充放电,首次可逆容量达到了607 mAh·g-1,经过40次循环后的容量保留率仍有92;。
Abstract:
A self-supporting silicon-containing hole carbon nanofiber membrane( H-Si-CNFs)was obtained by elec-trospinning a polyacrylonitrile( PAN)/DMF solution containing silica nanoparticles( SiNPs),followed by pre-oxida-tion,carbonization and HF-treating processing. The H-Si-CNFs are directly used as anode materials for making lithi-um ion batteries. SEM,TEM and XRD are used to observe and characterize the morphology,structure and composi-tion of the H-Si-CNF composite materials. The energy storage mechanism and cycle performance of the as-prepared H-Si-CNF-based Li ion battery is studied by using charge/discharge tester. The results show that the 10; silicon-containing H-Si-CNFs electrode has an excellent cycle performance at 100 mA·g-1 charging/discharging,the ini-tial reversible capacity of 607 mAh·g-1 and a capacity retention rate of 92; after 40 cycles.

参考文献/References:

[1] Armand M.Building better batteries [J].Nature,2008,451:652-657.
[2] Tarascon J M.Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414:359-367.
[3] 简绍菊,胡晓婺,邹燕,等.高强度聚酰亚胺/Ag复合纳米纤维的制备与表征 [J].江西师范大学学报:自然科学版,2012,36(1):1-4.
[4] 吴宇平,等.锂离子电池:应用与实践 [M].北京:化学工业出版社,2011.
[5] Obrovac M N.Reversible cycling of crystalline silicon powder [J].Journal of the Electrochemical Society,2007,154(2):A103-A108.
[6] Wang Jian.The development of silicon nanocomposite materials for Li-ion secondary batteries [J].The Open Materials Science Journal,2011,5(Suppl 1:M5)228-235.
[7] Thackeray M M.Electrical energy storage for transportation-approaching the limits of,and going beyond,lithium-ion batteries [J].Energy & Environmental Science,2012,5:7854-7863.
[8] Uday Kasavajjula.Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J].Journal of Power Sources,2007,163(2):1003-1039.
[9] Su Liwei.Li ion battery materials with core-shell nanostructures [J].Nanoscale,2011,3:3967-3983.
[10] Maranchi J P.High capacity,reversible silicon thin-film anodes for lithium-ion batteries [J].Electrochemical and Solid-State Letters,2003,6(9):A198-A201.
[11] Wu Hui.Designing nanostructured Si anodes for high energy lithium ion batteries [J].Nano Today,2012,7(5):414-429.
[12] Liu Nian.A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes [J].Nature Nanotechnology,2014(9):187-192.
[13] Liu Nian.Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes [J].Scientific Reports,2013(3):1919-1925.
[14] Wu Hui.Engineering empty space between Si nanoparticles for lithiumion battery anodes [J].Nano Letters,2012,12(2):904-909.
[15] Wu Hui.Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control [J].Nature Nanotechnology,2012,7:310-315.
[16] Wang Chao.Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries [J].Nature Chemistry,2013,5:1042-1048.
[17] Fathy M Hassan.Engineered Si electrode nanoarchitecture:a scalable postfabrication treatment for the production of next-generation Li-ion batteries [J].Nano Letters,2014,14(1):277-283.
[18] Zhou Xiaosi.Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries [J].Small,2013,9(16):2684-2688.
[19] Guo Qiaohui.A composite made from palladium nanoparticles and carbon nanofibers for superior electrocatalytic oxidation of formic acid [J].Microchimica Acta,2014,181(7/8):797-803.
[20] 赵吉诗.锂离子电池硅基负极材料研究进展 [J].稀有金属材料与工程,2007,36(8):1490-1494.
[21] Yi Ran.Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries [J].Advanced Energy Materials,2013,3(3):295-300.
[22] 徐宇虹.锂离子电池硅负极的失效行为与性能改进 [D].哈尔滨:哈尔滨工业大学,2010.
[23] Wang Jiaqing.Highly reversible lithium storage in Si(core)-hollow carbon nanofibers(sheath)nanocomposites [J].Nanoscale,2013,5:2647-2650.

相似文献/References:

[1]胡秀霞,欧阳楚英.离子迁移动力学的计算材料学研究方法概述及其在锂离子电池材料中的应用[J].江西师范大学学报(自然科学版),2013,(06):551.
 HU Xiu-xia,OUYANG Chu-ying.Computational Materials Sciences Methods for Studying Ionic Transport Dynamics and Their Applications in Lithium Ion Battery Materials[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(03):551.
[2]熊云奎,廖维林,涂媛鸿.石墨状聚萘的合成及其作为锂离子电池正极材料[J].江西师范大学学报(自然科学版),2015,(05):474.
 XIONG Yunkui,LIAO Weilin,TU Yuanhong.The Synthesis of Graphite-Like Polynaphthalene and Its Electrochemical Properties as Cathode Material for Lithium-Ion Battery[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(03):474.

备注/Memo

备注/Memo:
国家自然科学基金(21174058)
更新日期/Last Update: 1900-01-01