[1]陈 萌,孔令华,王 兰.Burgers方程的跳点紧致格式[J].江西师范大学学报(自然科学版),2017,(05):526-530.
 CHEN Meng,KONG Linghua,WANG Lan.The Jumping and Compact Method for Burgers Equation[J].,2017,(05):526-530.
点击复制

Burgers方程的跳点紧致格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年05期
页码:
526-530
栏目:
出版日期:
2017-11-01

文章信息/Info

Title:
The Jumping and Compact Method for Burgers Equation
作者:
陈 萌孔令华王 兰
江西师范大学数学与信息科学学院,江西 南昌 330022
Author(s):
CHEN MengKONG LinghuaWANG Lan
College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
Burgers 方程 跳点格式 Du Fort-Frankel格式 高阶紧致格式
Keywords:
Burgers equation jumping method Du Fort-Frankel method high order compact methods
分类号:
O 241.8
文献标志码:
A
摘要:
Burgers方程是流体力学中非常重要方程.通过Hopf-Cole变换可以将Burgers方程转化为抛物型方程,把为Burgers方程构造一种高精度的、高效率的数值格式的问题变成了为抛物型方程构造一种新格式的问题.新格式以等价于Du Fort-Frankel格式的跳点格式为基础,引入高阶紧致格式的思路以提高跳点格式的收敛阶,称新格式为跳点紧致格式.此格式既保持了跳点格式计算效率高、占用内存少、无条件稳定的优点,又将空间方向收敛阶由2阶提高到了4阶.最后,数值算例验证了跳点紧致格式在空间方向收敛阶是4阶的.
Abstract:
The Burgers equation is a very important model in fluid mechanics.It can be transformed into a general parabolic equation by a Hopf-Cole transformation.Then the problem about constructing a high accuracy and efficient method for Burgers equation has become a new problem for the parabolic equation.The new scheme is based on the jumping method which is equivalent to Du Fort-Frankel method.The high order compact methods are used to accelerate the convergent rate and it is called jumping and compact method.It maintains the advantages of highly computational efficiency,little memory and unconditional stability.Moreover,it also increases the convergent order in space from second to fourth.Lastly,a simple numerical example is introduced to verify that the convergent rate of the jumping and compact method in the space is of fourth order.

参考文献/References:

[1] Bateman H.Some resent researches on the motion of fluids [J].Monthly Weather Re,1915,43:163-170.
[2] Cole J D.On a quasi-linear parabolic equation occurring in aerodynamics [J].Quartely of Appl Math,1951,9(3):225-236.
[3] Hopf E.The partial differential equation ut+uux=μuxx [J].Commun Pure and Appl Math,1950,3(3):201-230.
[4] Kutluay S,Bahadir A R,?zdes A.Numerical solution of one-dimensional Burgers’ equation:explicit and exact-explicit finite difference methods [J].J Comput Appl Math,1999,103(2):251-261.
[5] 万德成,韦国伟.用拟小波方法数值求解Burgers方程 [J].应用数学和力学,2000,21(10):991-1001.
[6] 唐晨,刘铭,闰海青.Burgers方程的高精度多步显式格式 [J].天津大学学报,2004,37(10):929-933.
[7] 王文洽.Burgers方程的一类交替分组方法 [J].应用数学和力学,2004,25(2):213-220.
[8] 詹杰民,李毓湘.一维Burgers方程和Kdv方程的广义有限谱方法 [J].应用数学和力学,2006,27(2):1431-1438.
[9] Tabatabaei A H A E,Shakour E,Dehghan M.Some implicit methods for the numerical solution of Burgers’ equation [J].Appl Math Comput,2007,191(2):560-570.
[10] 王廷春,张鲁明.解Burgers方程的一种交替分段隐式算法 [J].计算物理,2005,22(2):137-142.
[11] Hon Yiuchung,Mao Xianzhong.An efficient numerical scheme for Burgers’ equation [J].Appl Math Comput,1998,95(1):37-50.
[12] 赵飞,蔡志权,葛永斌.1维非定常对流扩散方程的有理型高阶紧致差分格式 [J].江西师范大学学报:自然科学版,2014,38(4):413-418.
[13] 王兰.杆振动方程的高阶紧致差分格式 [J].江西师范大学学报:自然科学版,2015,39(4):351-354.
[14] 童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式 [J].江西师范大学学报:自然科学版,2014,38(5):521-525.
[15] 李广兴.解Schr?dinger方程和Burgers方程的紧差分格式 [D].青岛:中国海洋大学,2007.
[16] Kong Linghua,Hong Jialin,Ji Lihai.Compact and efficient conservative schemes for coupled nonlinear Schr?dinger equations [J].Numer Meth for Partial Diff Eq,2015,31(6):1814-1843.
[17] 陆金甫,关治.偏微分方程数值解法 [M].北京:清华大学出版社,2004:82-89.

备注/Memo

备注/Memo:
收稿日期:2017-01-10基金项目:国家自然科学基金(11301234,11271171,11501082)和江西省自然科学基金(20161ACB20006,20142BCB23009,20151BAB201012)资助项目.通信作者:孔令华(1977-),男,江西石城人,教授,博士,主要从事偏微分方程数值解法的研究.E-mail:konglh@mail.ustc.edu.cn
更新日期/Last Update: 1900-01-01