[1]李尧龙.闭正则模糊拟阵单点延拓的基有序性质[J].江西师范大学学报(自然科学版),2018,(06):600-603.[doi:10.16357/j.cnki.issn1000-5862.2018.06.09]
 LI Yaolong.The Properties of the Base Orderability on Single Element Extensions of Closed Regular Fuzzy Matroids[J].,2018,(06):600-603.[doi:10.16357/j.cnki.issn1000-5862.2018.06.09]
点击复制

闭正则模糊拟阵单点延拓的基有序性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
600-603
栏目:
数学与应用数学
出版日期:
2018-12-20

文章信息/Info

Title:
The Properties of the Base Orderability on Single Element Extensions of Closed Regular Fuzzy Matroids
文章编号:
1000-5862(2018)06-0600-04
作者:
李尧龙
渭南师范学院数理学院,陕西 渭南 714000
Author(s):
LI Yaolong
College of Mathematics and Physics,Weinan Teachers University,Weinan Shanxi 714000,China
关键词:
闭正则模糊拟阵 单点延拓 基有序
Keywords:
closed regular fuzzy matroid single element extension base orderbility
分类号:
O 157.1
DOI:
10.16357/j.cnki.issn1000-5862.2018.06.09
文献标志码:
A
摘要:
定义了闭正则模糊拟阵的单点I-型延拓与单点II-型延拓的基有序概念,利用模糊拟阵理论研究了闭正则模糊拟阵的单点系列延拓与单点平行延拓的基有序的若干性质,得到了闭正则模糊拟阵的单点系列延拓与单点平行延拓的基有序性质是保持的,并举例说明了闭正则模糊拟阵的单点系列延拓与单点平行延拓的基有序性质.
Abstract:
The definitions of the base orderbility on I-single element extension and II-single element extension of closed regular fuzzy matroids are given.Some properties of the base orderbility on single element series extension and single element parallel extension of closed regular fuzzy matroids are studied by the theory of fuzzy matroids.Examples of the base orderbility on single element extension of closed regular fuzzy matroids are given.

参考文献/References:

[1] Oxley J.Matroid theory[M].New York:Oxford University Press,1992.
[2] 赖虹建.拟阵论[M].北京:高等教育出版社,2002.
[3] Mao Hua.Characterization and reduce of concept lattices through matroid theory[J].Information Science,2014,281:338-354.
[4] Bruhn H,Diestel R,Kriesell M,et al.Axioms for infinite matroids[J].Adv Math,2013,239(3):18-46.
[5] Ferrari L.Greedy algorithms and poset matroids[J].J Discrete Algorithms,2014,29:21-26.
[6] Goetschel J R,Voxman W.Fuzzy matroids[J].Fuzzy Sets and Systems,1988,27(3):291-302.
[7] Goetschel J R,Voxman W.Bases of fuzzy matroids[J].Fuzzy Sets and Systems,1989,31(2):253-261.
[8] Goetschel J R,Voxman W.Fuzzy matroid structures[J].Fuzzy Sets and Systems,1991,41(3):343-357.
[9] Shi Fugui.A new approach to the fuzzifization of matroids[J].Fuzzy Sets and Systems,2009,160(5):696-705.
[10] Li Yaolong,Zhang Guojun,Lu Lingxia.Axioms for bases of closed regular fuzzy matroids[J].Fuzzy Sets and Systems,2010,161(12):1711-1725.
[11] 李尧龙.闭正则模糊拟阵的单点延拓[J].西南大学学报:自然科学版,2015,37(10):9-14.
[12] 林福宁,李生刚.强[0,1]-拟阵[J].模糊系统与数学,2016,30(3):26-32.
[13] 陈娟娟,吴德银,夏军.准模糊图拟阵的子拟阵[J].西南大学学报:自然科学版,2014,36(4):52-54.
[14] 夏军,吴德银,陈娟娟.准模糊图拟阵基的性质[J].重庆师范大学学报:自然科学版,2013,30(2):56-59.
[15] 刘文斌.准模糊图拟阵基图的性质[J].数学实践与认识,2013,43(10):271-274.

备注/Memo

备注/Memo:
收稿日期:2017-11-20
基金项目:国家自然科学基金(11201112)和渭南师范学院科研课题(17YKF01)资助项目.
作者简介:李尧龙(1970-),男,陕西渭南人,教授,主要从事模糊拟阵理论的研究.E-mail:liyaolong188@163.com
更新日期/Last Update: 2018-12-20