[1]许宏飞,李群宏*,宁 敏,等.双侧增加的分段线性不连续映射的边界碰撞分岔[J].江西师范大学学报(自然科学版),2018,(06):604-609.[doi:10.16357/j.cnki.issn1000-5862.2018.06.10]
 XU Hongfei,LI Qunhong*,NING Min,et al.The Border-Collision Bifurcation in a Class of Discontinuous Maps withTwo Linear Increasing Branches[J].,2018,(06):604-609.[doi:10.16357/j.cnki.issn1000-5862.2018.06.10]
点击复制

双侧增加的分段线性不连续映射的边界碰撞分岔()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
604-609
栏目:
数学与应用数学
出版日期:
2018-12-20

文章信息/Info

Title:
The Border-Collision Bifurcation in a Class of Discontinuous Maps with Two Linear Increasing Branches
文章编号:
1000-5862(2018)06-0604-06
作者:
许宏飞李群宏*宁 敏商梦媛
广西大学数学与信息科学学院,广西 南宁 530004
Author(s):
XU HongfeiLI Qunhong*NING MinSHANG Mengyuan
College of Mathematics and Information Sciences,Guangxi University,Nanning Guangxi 530004,China
关键词:
边界碰撞分岔 加周期现象 周期叠加现象 高复杂度水平周期轨道
Keywords:
border collision bifurcation period adding phenomenon superposition of periodic orbit periodic orbit of higher complexity level
分类号:
O 317; O 193
DOI:
10.16357/j.cnki.issn1000-5862.2018.06.10
文献标志码:
A
摘要:
利用Leonov方法研究了一类左右2侧都增加的分段线性不连续映射的动力学行为.通过调节系统的重要参数l,借助理论分析和数值仿真发现映射存在周期数成等差数列增长的加周期现象,也存在混沌和发散现象; 通过推导周期轨道的边界碰撞分岔曲线,确定了稳定周期轨道区域.根据高复杂度水平周期轨道的边界碰撞分岔曲线,结合双参数分岔图,解释了加周期现象和周期叠加现象.
Abstract:
Using theoretical analysis and numerical simulation,dynamic behavior of a class of discontinuous one-dimensional maps which are made of two linear increasing branches is considered by Leonov method.By modulating an important parameter of the map l,it is found that there exist the period adding sequences with period increasing of the arithmetic sequence,as well as chaos and divergence in the considered system.The boundaries of the stability region of the periodic orbits are determined by the border collision bifurcation curves of the periodic solutions.With the border collision bifurcation diagrams of periodic orbits of higher complexity levels,the phenomenon of period adding and period superposition are explained.

参考文献/References:

[1] Makrooni R,Abbasi N,Pourbarat M,et al.Robust unbounded chaotic attractors in 1D discontinuous maps[J].Chaos,Solitons and Fractals,2015,77:310-318.
[2] Avrutin V,Dutta P,Schanz M,et al.Influence of a square-root singularity on the behavior of piecewise smooth maps[J].Nonlinearity,2010,23(2):445-463.
[3] 沙金,包伯成,许建平,等.脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔[J].物理学报,2012,61(12):53-65.
[4] Gardini L,Tramontana F.Border collision bifurcation curves and their classification in a family of 1D discontinuous maps[J].Chaos,Solitons and Fractals,2011,44(4):248-259.
[5] 杨科利. 一类可变禁区的不连续系统的加周期分岔[J].物理学报,2015,64(12):91-97.
[6] Puu T,Sushko I.Oligopoly dynamics,models and tools[M].New York:Springer-Verlag,2002.
[7] Puu T,Sushko I.Business cycle dynamics,models and tools[M].New York:Springer Verlag,2006.
[8] Tramontana F,Gardini L.Border collision bifurcations in discontinuous one-dimensional linear-hyperbolic maps[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1414-1423.
[9] Nusse H,Yorke J.Border-collision bifurcations including period two to period three for piecewise smooth systems[J].Physica D Nonlinear Phenomena,1992,57(1/2):39-57.
[10] Maistrenko Y,Maistrenko V,Vikul S,et al.Bifurcations of attracting cycles from time-delayed Chua's circuit[J].Int J Bifurcat Chaos,1995,5(3):653-671.
[11] Maistrenko Y,Maistrenko V,Vikul S.On period-adding sequences of attracting cycles in piecewise linear maps[J].Chaos Solitons Fractals,1998,9(1):67-75.
[12] Avrutin V,Schanz M.On multi-parametric bifurcations in a scalar piecewise-linear map[J].Nonlinearity,2006,19(3):531-552.
[13] Avrutin V,Schanz M,Banerjee S.Codimension-3 bifurcations:explanation of the complex 1-,2- and 3d bifurcation structures in nonsmooth maps[J].Phys Rev E Stat Nonlin Soft Matter Phys,2007,75:066205.
[14] Gardin L,Tramontana F,Avrutin V,et al.Border-collision bifurcations in 1D piecewise-linear maps and Leonov's approach[J].International Journal of Bifurcation and Chaos,2010,20(10):3085-3104.
[15] 秦志英,李群宏.一类非光滑映射的边界碰撞分岔[J].力学学报,2013,45(1):25-29.
[16] Avrutin V,Eckstein B,Schanz M.On detection of multi-band chaotic attractors[J].Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences,2007,463(2081):1339-1358.
[17] Avrutin V,Schanz M,Schenke B.Coexistence of the bandcount-adding and bandcount-increment scenarios[J].Discrete Dynamics in Nature and Society,2011(2011):701-716.
[18] Jain P,Banerjee S.Border-collision bifurcations in one-dimensional discontinuous maps[J].International Journal of Bifurcation and Chaos,2011,13(11):3341-3351.
[19] Avrutin V,Sushko A,Tramontanac F.Bifurcation structure in a bimodal piecewise linear business cycle model[J].Dem Working Papers,2014,2014:1-12.

备注/Memo

备注/Memo:
收稿日期:2018-01-20
基金项目:国家自然科学基金(11372077),广西自然科学基金(2013GXNSFAA019017)和广西青年科学基金(2014GXNSFBA118024)资助项目.
通信作者:李群宏(1964-),男,广西扶绥人,教授,博士,博士生导师,主要从事常微分方程定性理论和非线性动力学理论与应用研究.E-mail:liqh@gxu.edu.cn
更新日期/Last Update: 2018-12-20