[1]邱淑芳,王泽文,曾祥龙,等.一类时间分数阶扩散方程中的源项反演解法[J].江西师范大学学报(自然科学版),2018,(06):610-615.[doi:10.16357/j.cnki.issn1000-5862.2018.06.11]
 QIU Shufang,WANG Zewen,ZENG Xianglong,et al.The Numerical Method for Reconstructing Source Term in a Time Fractional Diffusion Equation[J].,2018,(06):610-615.[doi:10.16357/j.cnki.issn1000-5862.2018.06.11]
点击复制

一类时间分数阶扩散方程中的源项反演解法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
610-615
栏目:
数学与应用数学
出版日期:
2018-12-20

文章信息/Info

Title:
The Numerical Method for Reconstructing Source Term in a Time Fractional Diffusion Equation
文章编号:
1000-5862(2018)06-0610-06
作者:
邱淑芳王泽文曾祥龙胡 彬
东华理工大学理学院,江西 南昌 330013
Author(s):
QIU ShufangWANG ZewenZENG XianglongHU Bin
School of Science,East China University of Technology,Nanchang Jiangxi 330013,China
关键词:
不适定问题 时间分数阶方程 源项反演 正则化方法 磨光方法
Keywords:
ill-posed problem time fractional equation source inversion regularization method mollification method
分类号:
O 175.8
DOI:
10.16357/j.cnki.issn1000-5862.2018.06.11
文献标志码:
A
摘要:
考虑了一类具有Neumann边界的时间分数阶扩散方程源项反演问题.首先,从分离变量法出发将反问题归结为第1类Volterra积分方程,从而揭示出反问题的不适定性; 其次,为了获得反问题的条件稳定性,通过分数阶数值微分将第1类Volterra积分方程转化为第2类Volterra积分方程,建立源项反问题的条件稳定性和误差估计; 最后,引进磨光正则化,获得稳定的分数阶数值导数,将其代入求解第2类积分方程,从而稳定地重建出仅依赖时间变量的源项.数值实验结果验证了所得反演算法的有效性.
Abstract:
An inverse source problem in a time fractional diffusion equation with Neumann boundary is considered.Firstly,from the method of separation of variables for solving the direct problem,the inverse source problem is turned into a Volterra integral equation of the first kind,which reveals ill-posedness of the inverse problem.Secondly,for obtaining conditional stability of the inverse problem,the Volterra integral equation of the first kind is transformed into a second kind Volterra integral equation by using fractional derivative,then the conditional stability and error estimate are established.Lastly,from stable approximation of the fractional derivative computed by utilizing the mollification regularization,the time-dependent source term is reconstructed stably by solving the Volterra integral equation of the second kind.Results of numerical experiments verify the effectiveness of the inversion algorithm.

参考文献/References:

[1] Sun Hongguang,Chen Wen,Li Changpin,et al.Fractional differential models for anomalous diffusion[J].Physica A Statistical Mechanics and Its Applications,2010,389(14):2719-2724.
[2] Podlubny I.Fractional differential equations:an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M].San Diego,CA:Academic Press,1999.
[3] Berkowitz B,Scher H,Silliman S E.Anomalous transport in laboratory-scale,heterogeneous porous media[J].Water Resources Research,2000,36(1):149-158.
[4] Metzler R,Klafter J.Subdiffusive transport close to thermal equilibrium:from the langevin equation to fractional diffusion[J].Physical Review E Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics,2000,61(6):6308-6311.
[5] Luchko Y.Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation[J].Computers and Mathematics with Applications,2010,59(5):1766-1772.
[6] Jiang Yingjun,Ma Jingtang.High-order finite element methods for time-fractional partial differential equations[J].Journal of Computational and Applied Mathematics,2011,235(11):3285-3290.
[7] Zhuang Pinghui,Liu Fawang.Implicit difference approximation for the time fractional diffusion equation[J].Journal of Applied Mathematics and Computing,2006,22(3):87-99.
[8] Gao Guanghua,Sun Haiwei,Sun Zhizhong.Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence[J].Journal of Computational Physics,2015,280:510-528.
[9] Cheng Jin,Nakagawa J,Yamamoto M,et al.Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation[J].Inverse Problems,2009,25(11):115002.
[10] Liu Jijun,Yamamoto M.A backward problem for the time-fractional diffusion equation[J].Applicable Analysis,2010,89(11):1769-1788.
[11] Zheng Guanghui,Wei Ting.A new regularization method for a Cauchy problem of the time fractional diffusion equation[J].Advances in Computational Mathematics,2012,36(2):377-398.
[12] Wei Ting,Zhang Zhengqiang.Reconstruction of a time-dependent source term in a time-fractional diffusion equation[J].Engineering Analysis with Boundary Elements,2013,37(1):23-31.
[13] Yang Fang,Fu Chuli,Li Xiaoxiao.A mollification regularization method for identifying the time-dependent heat source problem[J].Journal of Engineering Mathematics,2016,100(1):1-14.
[14] Aleroev T S,Kirane M,Malik S A.Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition[J].Electronic Journal of Differential Equations,2013,2013(270):584-609.
[15] Liu Yikan,Rundell W,Yamamoto M.Strong maximum principle for fractional diffusion equations and an application to an inverse source problem[J].Fractional Calculus and Applied Analysis,2016,19(4):888-906.
[16] Ruan Zhousheng,Wang Zewen.Identification of a time-dependent source term for a time fractional diffusion problem[J].Applicable Analysis,2017,96(10):1638-1655.
[17] 阮周生,王泽文,张文.数值求解时间分数阶扩散方程源项反问题[J].黑龙江大学自然科学学报,2015,32(5):586-590.
[18] 阮周生,张文,王泽文.带周期边界条件时间分数阶扩散方程逆时反问题的条件稳定性[J].河北大学学报:自然科学版,2015,35(6):561-565.
[19] Schneider W R.Completely monotone generalized Mittag-Leffler functions[J].Expositiones Mathematicae,1996,14(1): 3-16.
[20] Miller K S,Samko S G.A note on the complete monotonicity of the generalized Mittag-Leffler function[J].Real Analysis Exchange,1997,23(2):753-755.
[21] 谷超豪,李大潜,陈恕行,等.数学物理方程[M].上海:上海科学技术出版社,1987.
[22] Kress R.Linear integral equations[M].New York:Springer-Verlag,2014.
[23] Murio D A.On the stable numerical evaluation of caputo fractional derivatives[J].Computers and Mathematics with Applications,2006,51(9):1539-1550.
[24] Cao Jianxiong,Li Changpin,Chen Yangquan.High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations(II)[J].Fractional Calculus and Applied Analysis,2015,18(3):735-761.
[25] 胡彬,徐会林,王泽文,等.基于模型函数与L-曲线的正则化参数选取方法[J].江西师范大学学报:自然科学版,2014,38(6):569-573.

相似文献/References:

[1]胡彬,夏赟,喻建华.算子非精确条件下确定正则化参数的一种方法[J].江西师范大学学报(自然科学版),2014,(01):65.
 HU Bin,XIA Yun,YU Jian-hua.The Method for Determining Regularization Parameters with Perturbed Operators[J].,2014,(06):65.

备注/Memo

备注/Memo:
收稿日期:2018-06-20
基金项目:国家自然科学基金(11761007,11561003),江西省主要学科学术与技术带头人计划(20172BCB22019),江西省高校科技落地计划(KJLD14051)和江西省教育厅科技课题(GJJ170473)资助项目.
通信作者:邱淑芳(1972-),女,江西南昌人,副教授,主要从事数学建模与反问题的数值解法研究.E-mail:shfqiu@ecit.cn
更新日期/Last Update: 2018-12-20