38 6
2014 11

Journal of Jiangxi Normal University( Natural Science)

( ) Vol. 38 No.6

Nov. 2014

: 1000-5862(2014) 06-0557-64

The Toeplitz Operators on the Weighted Banach
Space of the Unit Ball

YANG Xiang-dong

( Department of Mathematics Kunming University of Science and Technology Kunming Yunnan 650093 China)

Abstract: In the case of positive symbols the continuity and compactness of a Toeplitz operator are character—

ized. The Toeplitz operator under investigation acts upon the weighted Banach space Hy, which consists of analytic

functions on the unit ball of C". Our characterizations are in terms of the Berezin transform.
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0 Introduction and Results

For any integern =1 let C" denote the Cartesian
z,) and { =
(&, =+ Z,) in C" the inner product is defined by
) =5l +5l+

product of n copies of C. Forz = (z, -

+z, 5 and throughout this
paper we denote |z| = (z, z, + = + 2z, z,) '*. More-
over B" stands for the open unit ball which consists
of all zin C" with ‘z‘ < 1.

Let dv denote the normalized volume measure on
B'(i.e. v(B")
real parameter o

[ =1z mde(z) <o
holds if and only if @ > — 1. We denote
dv(2) =a, (1 - [z]?) “do(2)

= 1) .1t is well known that for a

where a_ is some positive constant satisfying v ( B") =
1 with some fixed o > — 1.

By L we denote the space of p integrable
functions on B" with respect to the measure dv, . Here
1 < p < o.The Bergman space L’ is the closed
subspace of L’ which consists of all analytic

functions. The normalized reproducing kernels for L’

are of the form
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1 _ 2\ (n+l+a) /2
kz(g) = ( ‘z‘ ) (n+1+a)
(1= &gyt
Forallfe L} wehave ||k | =1and ¢ k) =

(1 _ ‘z‘z)(nﬂﬂx)/zf(z)‘

The orthogonal projection P: L* — L’ is defined

<t gl<n.

by the following integral operator

PAlz) = Lau (1= J:(zé;)» ——dv () fel.
The Toeplitz operator on L with symbol ¢ e L'

is defined by

_ () L)
TMz) = L"(l ~ G2y wradta( ) -

The Berezin transform of a function ¢ e L' is
defined by

o[ D)
QD(Z) - gn ‘1 _ <Z §> ‘2(n+1+a]

Since the Bergman projection can be extended to
L' the operator T, is well defined on H"( B") the

space of bounded analytic functions on B" which is

dv,(£). (1)

dense in L’. Hence T, is always densely defined on
LZ

For the case of bounded symmetric domains the
boundedness and compactness of Toeplitz operators
on Bergman spaces were characterized in terms of

Berezin transform in 1 . The Berezin transform was

employed to make a study of Toeplitz operators on
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Bergman spaces of the unit ball in 2 .

Recently there arose an interest in studying
operators on weighted Banach spaces of analytic
functions. Motivated by 12 3-8 in this paper in
terms of Berezin transform we will characterize the
continuity and compactness of the Toeplitz operators
on the weighted Banach space H; of analytic
functions on the unit ball. Denote

w(z): =1+ [log(1 - |z]) | ze B (2)

Then the space Hj (respectively Lj) consists of
analytic ( respectively measurable) functions f: B" —C
such that for some nonnegative m and constant n
flz) |< A, (w(z))" for (almost) all z € B".(3)

From 941

only a ( LB) space i.e. countable inductive limit of

we know that the space Hj is not

Banach spaces but also a complete space. More
precisely the topology could be defined by means of
the family of weighted sup-seminorms
1A = sup|fiz) [u(z) wel
where U is the set of all continuous positive radial
functions u: B" — R such that for all m
lu(z) [< A, (w(z) ™

The continuity and compactness of Toeplitz
operators in Hj, are characterized in terms of the
growth properties of the Berezin transform as
follows.

Theorem 1 Let ¢ be a nonnegative function
defined on B". Then the Toeplitz operator T,: Hj; —

H7 is continuious if and only if there some kj,and A >

0 such that the Berezin transform ¢ in (1) satisfies
o) <A(u(2)" s ¢ B (4)
where w( z) is defined in (2) .

Theorem 2 Let ¢ be a nonnegative function
defined on B". Then the Toeplitz operator T,: H; —
H7 is compact if there exist some k, such that for
every positive m there exists A, > 0 with

e(2) (1= 12" (ol (= ¢)))
B (11— @) [t
A (w(z))™ ze B
where w( z) is defined in (2) .

dv,(¢) <

1 Preliminaries

Forz € B" let i, be the analytic map of B" onto

B" such that 4 (0) =z and ¢, o ¢.(w) = w. These
maps i, are called involutions of B". For example in
the case of the unit disk

P(w) = (z-w) /(1 -zw)
is such a map.

The Bergman metric on the unit ball is given by

1, 1+ g (w) |
) =y |
Forany z € B" and r > 0 denote the Bergman metric
ball by

D(zw) ={we B":B(zw) <r}.

And it is well-known that once r is fixed then
the volume v, (D(z r)) is comparable to (1 -
|z]%) "¢ See 11 for example.

An rdattice in the Bergman metric is a sequence
{a,} in B" satisfying the following conditions( see

2 for example)

(1) The unit ball is covered by the Bergman
metric balls { D(a, 1) };

(ii) B(a, a) =r/2 for all i and j with i # j.

Throughout this paper we will denote positive
constants by A and it may be different at each
occurrence.

We shall use the following lemma (see 11
and 2 for example) ..

Lemma 1 Suppose that b is an arbitrary real
number and r > 0. Then there is a positive constant A

such that

(1- &N’
HoeE =t w

forall z ¢ and np in B" with B( & ) <.

As a consequence if r > 0 and A is some

positive constant then the following inequality

1 - &
1 - ¢

holds for all z ¢ and 5 in B" with B( ¢ n) < r.
Remark 1 Let F and G be positive real valued

AT < <A (5)

functions. The symbol F = G will be used if there
exist two absolute positive constants A, and A, such
that A, F < G <A, F holds on the whole domain of
definition. From (5) it is clear that
M- Gol=]1-¢nl
wherever z £ and n in B" with B( & n) < r.
We shall present some results on the space Hj

for later use. Let w(z) be defined in (2).And we
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define
U, = {f.f e H} and satisfies( 3) }

the subsets U” of L7 are defined in the same way. We
know U that the sets U, are bounded and even
precompact in Hy. Every bounded subsets of H is
contained in a multiple of some U,,.

Lemma 2 (i) If u € U then the pointwise
product w'v also belongs to U;

(i) The mapping P is a continuious projection
from L}, to L;

(iii) For the projection P U C A, U,,,, hold for

m+1
all m.
We also collect some results on linear operators

from 89

Lemma 3 (i) A linear operator between two

in the following lemma for later use.

( LB) -spaces is continuous if and only if it maps
bounded sets into bounded sets. In the case of this
paper this means that T H;; — Hj is continuous if
and only if for every m e N one can find A, > 0 and
C AU

m -~ m+ky?

some exist some k, such that T, ( U,)
(i)

compact if and only if there exists some k, such that

The linear operator T,:H; — Hy is

for every m one can find A, > 0 and such that

T,(U,) CA,U,.

2 Proof of Theorem

Proof of Theorem 1 Our proof follows from a
combination of the methods and constructions in 8

and 2 .Let {a,} be a rdattice which satisfies

\ak\ =1-2%and1 -2 «r <1 -2" since
o({) is a positive symbol combitination of the
definition of Berezin transform in (1) and (4)
yields.
By Lemma 1 we have

(1 - ‘(lk‘Z)(n-#l-Hx) 4

=, O P9 = 0 (D(a, 1)
Since v, (D(a, r)) is comparable to (1 - |4, |?) i
we have

Ak"

(6)

L)( aj ) QD(

From Lemma 3 it is clear that the continuity of T,

{) dv, () < JHneTra)”

follows if for an arbitrary m € N we can find a

> 0 such that T,(U,) CA4,,U

constant A m m ko~ m+kg+1°

m kg

To prove these facts we fix the rattice { a,} in
the Bergman metric as the beginning of the proof and
estimate T, as follows. Without loss of generality we

may assume zy, = 1 —27" then

e 1= [ A a0 ()

According to lemma 1 |1 — ¢ ¢) ["*"' = A 1 -

Gy O | "™ for B(z zy,) < 1 thus (7)

written as

| Tqﬂ zy) < ;AL(% )| lgti(gzz\féf) n‘+a+ldvo(( {)-(8)
For{ e D(a;, r) wehave [1 - &, o) [=1-(1-
27M (1 -2 =2 + 27" Since f € U, we have
the following estimate

) < AK" (9)
By (8) and (9) (7) can be bounded by a constant

times

can be

o km,
z ( 271\“' + 27A~) n+l+aJ’D(ak p QD( g) d’Uu( g) .

k=1

Combination of these estimates and (6) yield
k(k0+m)

‘ Tyf( z/\) ‘ <A ]{2:1 2k(n+l+a) (2—1\" + 2—k) n+l+a’

Now we proceed with the estimate of the series

(10)

i kkoﬂn © k(kn+m)
v _ = —. (11
]; 2k(n+l+a) (2—1\‘ + 2—k) n+l+a “~ 1 + 2k—]\ ( )
We write the series on the right side of (11) as
o k(k0+m) k(k0+m) k(k0+ln)
— v = — o T — 12
,21 1 +2"" E\l +24 ,Z’\l e (12
It is easy to derive the following inequality
k( ko+m) ( ) . .
— Ty = gt AN (13)
,ZA 1+2 I;

0

Integrating by parts the expression jxko_me_xdx
N

yields

k(kO-Hn) . '
W$A(ko+m+l)!]\f‘”"”. (14)
=
By (10) ~ (14) we get the estimate
‘T‘P}(( ZN) ‘S ANk(]+rr:+l < A, ‘log(l _ ‘zw ‘) ko+m+1
which shows that 7, maps U, into U, ,,.,. Thus the

continuity of T is proved.

Conversely if T, is bounded. we can find k&, € N
such that T, maps U, into AU, . For every z € B" we
have

(L= 1[z) """ K () ||, <2""
ThUS Tw( ( 1 _ ‘Z ‘2) n+l+aKz( (1)) ) e 2n+l+uAUk0 fOI‘
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every z and

‘T¢( ( 1 - ‘z‘z) n+l+aKZ( w) ) ‘s 2n+l+aAw ( w) ko
holds for all ¢ € B". Taking w = z we get

QD( g) (1 _ ‘Z‘z) n+l+a
pn ‘1 _ <Z {> ‘2(n+l+u)
[y -

,,(1 _ <Z §>) (n+1+a) (1 _ <Z Z>)("+l+a
[ T,((1 = [2])"""K) (o) [ < Aw () "

Proof of Theorem 2 Since the proof is the

le(2) | dv (2)

) dv,(¢)

same to the proof of Theorem 1 we just need to give
a sketch of the proof here.

Let {a,} be a rdattice which satisfies |q, | =
1 -2"%and 1 -2"" <r<1-27" Applying the same
reasoning of (6) with

[log(1 = | ¢ ) ) [=-log(1-| & O ]) =k
included we have

Akk()fm

J;)(“k ) o()dv () < PECEETE (15).

From Lemma 3 it is clear that the compactness of T,
follows if we can show that there exists m; € N such
that for every m € N one can find A,, > 0 and such
that T,(U,) C A,U,,.

To prove these facts we fix the rattice { @} in
the Bergman metric as the beginning of the proof and
estimate T, as follows. Without loss of generalization
we may assume z, = 1 — 27" replacing (6) by
(15) then applying the reasoning of (7) ~ (14)
we have the estimate

T ) < AN < A7

log(1 = [z, ]) |

Banach

Berezin Banach
Toeplitz

. Toeplitz : Banach : :

which shows that 7, maps U, into U, ,,.Thus the

compactness of T, is proved.
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