文章编号:1000-5862(2014)06-0557-04

The Toeplitz Operators on the Weighted Banach Space of the Unit Ball

YANG Xiang-dong

(Department of Mathematics Kunning University of Science and Technology Kunning Yunnan 650093 , China)

Abstract: In the case of positive symbols the continuity and compactness of a Toeplitz operator are characterized. The Toeplitz operator under investigation acts upon the weighted Banach space H_U^{∞} which consists of analytic functions on the unit ball of C^n . Our characterizations are in terms of the Berezin transform.

Key words: Toeplitz operators; weighted Banach spaces; continuity; compactness中图分类号: 0 174.5文献标志码: A

0 Introduction and Results

For any integer $n \ge 1$, let C^n denote the Cartesian product of *n* copies of *C*. For $z = (z_1, \dots, z_n)$ and $\zeta = (\zeta_1, \dots, \zeta_n)$ in C^n the inner product is defined by $\langle z \zeta \rangle = z_1 \overline{\zeta_1} + z_2 \overline{\zeta_2} + \dots + z_n \overline{\zeta_n}$ and throughout this paper ,we denote $|z| = (z_1 \overline{z_1} + \dots + z_n \overline{z_n})^{1/2}$. Moreover \mathcal{B}^n stands for the open unit ball which consists of all z in C^n with |z| < 1.

Let dv denote the normalized volume measure on B^n (i.e. $p(B^n) = 1$). It is well known that for a real parameter α ,

$$\int_{B^n} (1 - |z|^2)^{\alpha} \mathrm{d}v(z) < \infty$$

holds if and only if $\alpha > -1$. We denote

$$\mathrm{d}v_{\alpha}(z) = a_{\alpha} (1 - |z|^2)^{\alpha} \mathrm{d}v(z)$$

where a_{α} is some positive constant satisfying $v_{\alpha}(B^n) = 1$ with some fixed $\alpha > -1$.

By L^p we denote the space of p integrable functions on B^n with respect to the measure dv_{α} . Here $1 \leq p \leq \infty$. The Bergman space L^p_a is the closed subspace of L^p which consists of all analytic functions. The normalized reproducing kernels for L^2_a are of the form

$$\begin{split} k_{z}(\zeta) &= \frac{(1 - |z|^{2})^{(n+1+\alpha)/2}}{(1 - \langle z | \zeta \rangle)^{(n+1+\alpha)}}, |z| < 1, |\zeta| < 1.\\ \text{For all } f \in L^{2}_{a} \text{ ,we have } ||k_{z}|| &= 1 \text{ and } \langle f | k_{z} \rangle \\ &= (1 - |z|^{2})^{(n+1+\alpha)/2} f(z). \end{split}$$

The orthogonal projection $P: L^2 \to L^2_a$ is defined by the following integral operator

$$Pf(z) = \int_{B^n} \frac{f(\zeta)}{(1 - \langle z \zeta \rangle)^{n+1+\alpha}} dv_{\alpha}(\zeta) \quad f \in L^2_a.$$

The Toeplitz operator on L^2_a with symbol $\varphi \in L^1$ is defined by

$$T_{\varphi}f(z) = \int_{B^n} \frac{\varphi(\zeta) f(\zeta)}{(1 - \langle z \zeta \rangle)^{n+1+\alpha}} \mathrm{d}v_{\alpha}(\zeta) .$$

The Berezin transform of a function $\varphi \in L^1$ is defined by

$$\tilde{\varphi}(z) = \int_{B^n} \frac{\varphi(\zeta) (1 - |z|^2)^{(n+1+\alpha)}}{|1 - \langle z \zeta \rangle|^{2(n+1+\alpha)}} \mathrm{d}v_{\alpha}(\zeta) . (1)$$

Since the Bergman projection can be extended to L^1 the operator T_{φ} is well defined on $H^{\infty}(B^n)$ the space of bounded analytic functions on B^n which is dense in L^2_a . Hence T_{φ} is always densely defined on L^2_a .

For the case of bounded symmetric domains the boundedness and compactness of Toeplitz operators on Bergman spaces were characterized in terms of Berezin transform in [1]. The Berezin transform was employed to make a study of Toeplitz operators on

基金项目:国家自然科学基金(11261024)资助项目.

作者简介:杨向东(1976-),云南丽江人,教授,博士,主要从事复分析的研究.

收稿日期:2014-04-15

Bergman spaces of the unit ball in [2].

Recently there arose an interest in studying operators on weighted Banach spaces of analytic functions. Motivated by [1-2, 3-8] in this paper in terms of Berezin transform we will characterize the continuity and compactness of the Toeplitz operators on the weighted Banach space H_U of analytic functions on the unit ball. Denote

$$w(z): = 1 + |\log(1 - |z|)| z \in B^{n}$$
. (2)

Then the space H_U^{∞} (respectively L_U^{∞}) consists of analytic (respectively measurable) functions $f: B^n \to C$ such that for some nonnegative m and constant n $|f(z)| \leq A_m (w(z))^m$ for (almost) all $z \in B^n$. (3)

 $|f(z)| \leq A_m(w(z))$ for (almost) all $z \in B$. (3)

From [9-11] we know that the space H_U^{∞} is not only a (*LB*) -space *i.e.* countable inductive limit of Banach spaces but also a complete space. More precisely the topology could be defined by means of the family of weighted sup-seminorms

 $||f||_{u} = \sup_{z \in B^{n}} |f(z)| |u(z)| \mu \in U$,

where U is the set of all continuous positive radial functions $u: B^n \to \mathbf{R}$ such that for all m

 $|u(z)| \leq A_m (w(z))^{-m}.$

The continuity and compactness of Toeplitz operators in H_U^{∞} are characterized in terms of the growth properties of the Berezin transform as follows.

Theorem 1 Let φ be a nonnegative function defined on B^n . Then the Toeplitz operator $T_{\varphi}: H_U^{\infty} \to H_U^{\infty}$ is continuious if and only if there some k_0 and A > 0 such that the Berezin transform $\tilde{\varphi}$ in (1) satisfies

 $\tilde{\varphi}(z) \leq A (w(z))^{k_0} z \in \mathbf{B}^n$, (4) where w(z) is defined in (2).

Theorem 2 Let φ be a nonnegative function defined on B^n . Then the Toeplitz operator $T_{\varphi}: H_U^{\infty} \to H_U^{\infty}$ is compact if there exist some k_0 such that for every positive *m* there exists $A_k > 0$ with

 $\int_{B^n} \frac{\varphi(\zeta) (1 - |z|^2)^{(n+1+\alpha)} (u(\langle z \zeta \rangle))^m}{|1 - \langle z \zeta \rangle|^{2(n+1+\alpha)}} dv_{\alpha}(\zeta) \leq A_k (w(z))^{k_0} z \in B^n,$ where w(z) is defined in (2).

1 Preliminaries

For $z \in B^n$, let ψ_z be the analytic map of B^n onto

 B^n such that $\psi_z(0) = z$ and $\psi_z \circ \psi_z(w) = w$. These maps ψ_z are called involutions of B^n . For example, in the case of the unit disk,

$$\psi_z(w) = (z - w) / (1 - \bar{z}w)$$

is such a map.

The Bergman metric on the unit ball is given by

$$\beta(z \ w) = \frac{1}{2} \log \frac{1 + |\psi_z(w)|}{1 - |\psi_z(w)|}.$$

For any $z \in B^n$ and r > 0 denote the Bergman metric ball by

 $D(z \ \mu) = \{ w \in B^n : \beta(z \ \mu) < r \}.$

And it is well-known that once r is fixed then the volume $v_{\alpha}(D(z r))$ is comparable to $(1 - |z|^2)^{n+1+\alpha}$. See [11] for example.

An *r*-lattice in the Bergman metric is a sequence $\{a_k\}$ in B^n satisfying the following conditions(see [2] for example)

(i) The unit ball is covered by the Bergman metric balls { $D(a_k, r)$ };

(ii) $\beta(a_i, a_j) \ge r/2$ for all *i* and *j* with $i \ne j$.

Throughout this paper we will denote positive constants by A and it may be different at each occurrence.

We shall use the following lemma (see [11] and [2] for example)..

Lemma 1 Suppose that b is an arbitrary real number and r > 0. Then there is a positive constant A such that

$$\left|\frac{\left(1 - \langle z \xi \rangle\right)^{b}}{\left(1 - \langle z \eta \rangle\right)^{b}}\right| \leq A\beta(\xi \eta)$$

for all $z \notin and \eta$ in B^n with $\beta(\xi, \eta) \leq r$.

As a consequence if r > 0 and A is some positive constant then the following inequality

$$A^{-1} \leq \left| \frac{1 - \langle z \xi \rangle}{1 - \langle z \eta \rangle} \right| \leq A \tag{5}$$

holds for all $z \notin and \eta$ in B^n with $\beta(\notin \eta) \leq r$.

Remark 1 Let F and G be positive real valued functions. The symbol $F \cong G$ will be used if there exist two absolute positive constants A_1 and A_2 such that $A_1F \leq G \leq A_2F$ holds on the whole domain of definition. From (5) it is clear that

 $|1 - \langle z \xi \rangle| \cong |1 - \langle z \eta \rangle|$

wherever $z \notin \text{and } \eta$ in B^n with $\beta(\notin \eta) \leq r$.

We shall present some results on the space H_U^{∞} for later use. Let w(z) be defined in (2). And we define

$$U_m = \{ f: f \in H_U^\infty \text{ and satisfies}(3) \}$$

the subsets U_m^p of L_U^∞ are defined in the same way. We know U that the sets U_m are bounded and even precompact in H_U^∞ . Every bounded subsets of H_U^∞ is contained in a multiple of some U_m .

Lemma 2 (i) If $u \in U$ then the pointwise product $w^k v$ also belongs to U;

(ii) The mapping P is a continuious projection from L_U^{∞} to L_U^{∞} ;

(iii) For the projection P, $U_m^P \subset A_m U_{m+1}$ hold for all m.

We also collect some results on linear operators from [8-9] in the following lemma for later use.

Lemma 3 (i) A linear operator between two (LB)-spaces is continuous if and only if it maps bounded sets into bounded sets. In the case of this paper this means that $T_{\varphi} \colon H_U^{\infty} \to H_U^{\infty}$ is continuous if and only if for every $m \in \mathbb{N}$ one can find $A_m > 0$ and some exist some k_0 such that $T_{\varphi}(U_m) \subset A_m U_{m+k_0}$;

(ii) The linear operator $T_{\varphi} \colon H_U^{\infty} \to H_U^{\infty}$ is compact if and only if there exists some k_0 such that for every m one can find $A_m > 0$ and such that $T_{\varphi}(U_m) \subset A_m U_{k_0}$.

2 **Proof of Theorem**

Proof of Theorem 1 Our proof follows from a combination of the methods and constructions in [8] and [2]. Let $\{a_k\}$ be a *r*-lattice which satisfies $|a_k| = 1 - 2^{-k}$ and $1 - 2^{-(k-1)} < r \le 1 - 2^{-k}$. since $\varphi(\zeta)$ is a positive symbol combination of the definition of Berezin transform in (1) and (4) yields.

By Lemma 1 ,we have

$$\frac{\left(1 - |a_k|^2\right)^{(n+1+\alpha)}}{|1 - \langle a_k \zeta \rangle|^{2(n+1+\alpha)}} \ge \frac{A}{v_{\alpha}(D(a_k r))}.$$

Since $v_{\alpha}(D(a_k r))$ is comparable to $(1 - |a_k|^2)^{n+1+\alpha}$, we have

$$\int_{D(a_k,r)} \varphi(\zeta) \, \mathrm{d}v_{\alpha}(\zeta) \, \leq \frac{Ak^{k_0}}{2^{k(n+1+\alpha)}}. \tag{6}$$

From Lemma 3 it is clear that the continuity of T_{φ} follows if for an arbitrary $m \in \mathbf{N}$ we can find a constant $A_{m k_0} > 0$ such that $T_{\varphi}(U_m) \subset A_{m k_0}U_{m+k_0+1}$. To prove these facts we fix the *r*-lattice $\{a_k\}$ in the Bergman metric as the beginning of the proof and estimate T_{φ} as follows. Without loss of generality we may assume $z_N = 1 - 2^{-N}$ then

$$|T_{\varphi}f(z_{N})| \leq \int_{B^{n}} \frac{\varphi(\zeta) |f(\zeta)|}{|1 - \langle z | \zeta \rangle |^{n+\alpha+1}} \mathrm{d}v_{\alpha}(\zeta). \quad (7)$$

According to lemma 1, $|1 - \langle z \zeta \rangle|^{n+\alpha+1} \ge A |1 - \langle z_N \zeta \rangle|^{n+\alpha+1}$ for $\beta(z z_N) < r$ thus (7) can be written as

$$|T_{\varphi}f(z_N)| \leqslant \sum_{k=1}^{\infty} A \int_{D(a_k r)} \frac{\varphi(\zeta) |f(\zeta)|}{|1 - \langle z_N \rangle \zeta} dv_{\alpha}(\zeta) . (8)$$

For $\zeta \in D(a_k r)$, we have $|1 - \langle z_N \zeta \rangle| \cong 1 - (1 - 2^{-N})(1 - 2^{-k}) \cong 2^{-N} + 2^{-k}$. Since $f \in U_m$, we have the following estimate

$$|f(\zeta)| \leq A_m k^m.$$
(9)

By (8) and (9) (7) can be bounded by a constant times

$$\sum_{k=1}^{\infty} \frac{k^m}{\left(2^{-N}+2^{-k}\right)^{n+1+\alpha}} \int_{D(a_k,r)} \varphi(\zeta) \, \mathrm{d}v_{\alpha}(\zeta) \, .$$

Combination of these estimates and (6) yield

$$|T_{\varphi}f(z_N)| \leq A \sum_{k=1}^{\infty} \frac{k^{(k_0+m)}}{2^{k(n+1+\alpha)} (2^{-N} + 2^{-k})^{n+1+\alpha}}.$$
 (10)

Now we proceed with the estimate of the series

$$\sum_{k=1}^{\infty} \frac{k^{k_0+m}}{2^{k(n+1+\alpha)} \left(2^{-N}+2^{-k}\right)^{n+1+\alpha}} \leqslant \sum_{k=1}^{\infty} \frac{k^{(k_0+m)}}{1+2^{k-N}}.$$
 (11)

We write the series on the right side of (11) as

$$\sum_{k=1}^{\infty} \frac{k^{\binom{k_0+m}{k-N}}}{1+2^{k-N}} = \sum_{k \le N} \frac{k^{\binom{k_0+m}{k-N}}}{1+2^{k-N}} + \sum_{k>N} \frac{k^{\binom{k_0+m}{k-N}}}{1+2^{k-N}}.$$
 (12)

It is easy to derive the following inequality

$$\sum_{k \leq N} \frac{k^{(k_0+m)}}{1+2^{k-N}} \leq \sum_{k \leq N} k^{(k_0+m)} \leq AN^{k_0+m+1}.$$
 (13)

Integrating by parts the expression $\int_{N}^{\infty} x^{k_0-m} e^{-x} dx$ yields

$$\sum_{k \ge N} \frac{k^{(k_0+m)}}{1+2^{k-N}} \le A(k_0+m+1)! N^{k_0+m+1}.$$
 (14)

By (10) ~ (14) , we get the estimate

 $|T_{\varphi}f(z_N)| \leq AN^{k_0+m+1} \leq A \leq |\log(1 - |z_N|)|^{k_0+m+1}$, which shows that T_{φ} maps U_m into U_{k_0+m+1} . Thus the continuity of T_{φ} is proved.

Conversely if T_{φ} is bounded, we can find $k_0 \in \mathbf{N}$ such that T_{φ} maps U_1 into AU_{k_0} . For every $z \in B^n$,we have

 $\| (1 - |z|^2)^{n+1+\alpha} K_z(\omega) \|_{\infty} \leq 2^{n+1}.$ Thus $T_{\varphi}((1 - |z|^2)^{n+1+\alpha} K_z(\omega)) \in 2^{n+1+\alpha} A U_{k_0}$ for every z and

$$\left| T_{\varphi}((1 - |z|^2)^{n+1+\alpha}K_z(\omega)) \right| \leq 2^{n+1+\alpha}Aw(\omega)^{k_0}$$

holds for all $\zeta \in B^n$. Taking $\omega = z$, we get

$$\begin{split} \left| \tilde{\varphi}(z) \right| &= \left| \int_{B^n} \frac{\varphi(\zeta) \left(1 - |z|^2\right)^{n+1+\alpha}}{|1 - \langle z | \zeta \rangle} dv_{\alpha}(\zeta) \right| = \\ \left| \int_{B^n} \frac{\varphi(\zeta)}{(1 - \langle z | \zeta \rangle)^{(n+1+\alpha)}} \frac{(1 - |z|^2)^{n+1+\alpha}}{(1 - \langle z | \zeta \rangle)^{(n+1+\alpha)}} dv_{\alpha}(\zeta) \right| = \\ \left| T_{\varphi}((1 - |z|^2)^{n+1+\alpha} K_z)(\omega) \right| &\leq Aw(z)^{k_0}. \end{split}$$

Proof of Theorem 2 Since the proof is the same to the proof of Theorem 1, we just need to give a sketch of the proof here.

Let $\{a_k\}$ be a *r*-lattice which satisfies $|a_k| = 1 - 2^{-k}$ and $1 - 2^{k-1} < r \le 1 - 2^{-k}$. Applying the same reasoning of (6) with

 $\left|\log(1 - |\langle_{\mathcal{I}} \zeta \rangle|\right) \right| \cong -\log(1 - |\langle_{\mathcal{I}} \zeta \rangle|) \cong k$ included ,we have

$$\int_{D(a_k,r)} \varphi(\zeta) \, \mathrm{d}v_{\alpha}(\zeta) \, \leq \frac{Ak^{k_0-m}}{2^{2(n+1+\alpha)}}. \tag{15}$$

From Lemma 3 , it is clear that the compactness of T_{φ} follows if we can show that there exists $m_0 \in \mathbf{N}$ such that for every $m \in \mathbf{N}$ one can find $A_m > 0$ and such that $T_{\varphi}(U_m) \subset A_m U_{m_0}$.

To prove these facts ,we fix the *r*-lattice $\{a_k\}$ in the Bergman metric as the beginning of the proof and estimate T_{φ} as follows. Without loss of generalization, we may assume $z_N = 1 - 2^{-N}$ replacing (6) by (15) then applying the reasoning of (7) ~ (14), we have the estimate

 $\mid T_{\varphi}f(z_{\scriptscriptstyle N}) \mid \, \leqslant AN^{k_0+1} \, \leqslant A \, \check{} \mid \log(1 - \mid z_{\scriptscriptstyle N} \mid) \mid^{k_0+1}$,

which shows that T_{φ} maps U_m into U_{k_0+1} . Thus the compactness of T_{φ} is proved.

3 References

- Zhu Kehe. Positive toeplitz operators on weighted bergman spaces of bounded symmetric domains [J]. J Operator Theory ,1988 20(2): 329–357.
- [2] Zhu Kehe. Schatten class toeplitz operators on weighted bergman spaces of the unit ball [J]. New York J Math, 2007, 13: 299-316.
- [3] Zhu Kehe. Operator theory in function spaces [M]. New York: Marcel Dekker ,1990.
- [4] Berger C A ,Coburn L A. Toeplitz operators and quantum mechanics [J]. J Funct Anal ,1986 68(3): 273-299.
- [5] Berger C A ,Coburn L A. Toeplitz operators on the Segal-Bargmann space [J]. Trans Amer Math Soc ,1987 ,301 (2):813-829.
- [6] Berger C A ,Coburn L A. Heat flow and Berezin-Toeplitz estimates [J]. Amer J Math ,1994 ,116(3):563-590.
- [7] Berger C A Coburn L A Zhu Kehe. Toeplitz operators and function theory in n-dimensions [J]. Lecture Notes in Math ,1987 ,1256: 28-35.
- [8] Bonet J ,Taskinen J. Toeplitz operators on the space of analytic functions with logarithmic growth [J]. J Math Anal Appl 2009 353(1):428-435.
- [9] Kothe G. Topological vector spaces I and II [M]. Berlin: Springer-Verlag ,1979.
- [10] Rudin W. Function theory in the unit ball of Cn [M]. New York: Springer-Verlag ,1980.
- [11] Zhu Kehe. Spaces of holomorphic functions in the unit ball[M]. New York: Springer-Verlag 2005.

单位球上加权 Banach 空间中的 Toeplitz 算子

杨向东

(昆明理工大学数学系,云南昆明 650093)

摘要: 应用 Berezin 变换的方法对单位球上加权 Banach 空间中的 Toeplitz 算子进行刻画,对正函数的情形,将现有的单位圆的 相关结论推广至单位球,得到 Toeplitz 算子连续的充分必要条件,并给出 Toeplitz 算子为紧算子的充分条件. 关键词: Toeplitz 算子; 加权 Banach 空间; 连续性; 紧致性

(责任编辑:王金莲)