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0 Introduction

The purpose for posing these old and new prob-
lems and conjectures arising in studying the Nevanlin-
na's value distribution theory and its applications is to
stimulate peers' interest to further study of the theory
and properties of entire and meromorphic functions of
one complex variable． Be reminded that one can find
studies and results on similar topics for functions of
several complex variables or p-adic functions of several
complex variables［1-5］． For simplicity，here we shall ad-
dress the problems and conjectures for ( non-constant)
entire or meromorphic functions of one complex varia-
ble only，and most of them were proposed by the au-
thors and their co-workers earlier． We refer the reader
to［6-8］ for the Nevanlinna's theory and its associated
notations． Problems and conjectures will be stated in
four different topics: ( i) factorization and fixed points
of entire functions; ( ii ) dynamics of two permutable
entire functions; ( iii) functional equations of Diophan-
tine type over functions field; ( iv) complex differential

equations． Sources，definitions，and results relevant to
these problems and conjectures will be stated or cited，
with references． One can find that some of open prob-
lems and conjectures were posed in［9］and as far as
the present authors know of that no significant progres-
ses or results towards those problems or conjecturrs
have been obtained．

1 Factorizations and Fixed Points of
Entire Functions

Definition 1［10］ Let F，f and g be non-constant
entire functions． The expression or composition: F =
f( g) ( or f  g ) is called a factorization of F，with f and
g the left and right factor，respectively． F is called a
prime ( pseudo-prime ) function iff whenever F has a
factorization: F = f ( g ) implies that either f or g is a
linear function ( polynomial) ．

There have been many sufficient conditions or cri-
teria to judge whether or not a certain function is prime
or pseudo-prime，but no necessary condition or criterion
for such a verification has been found yet． N． Stein-



metz［11］ proved a general sufficient condition to judge a
transcendental entire function F( z) is pseudo-prime．

Theorem 1 Let F( z) be a transcendental mero-
morphic solution of the following linear differential
equation

w ( n) + an － 1 ( z) w
( n － 1) +… + a0 ( z) w + a( z) = 0，

where an－1 ( z) ，…，a0 ( z) ，a( z) are rational functions．
Then F( z) is pseudo-prime．

Question 1 What is a necessary condition for an
entire function to be prime or pseudo-prime?

If F is a pseudo-prime entire function，P( F) may
not be pseudo-prime． Song Guodong et al．［12］ proved
the following result．

Theorem 2 If F ( z ) is a pseudo-prime entire
function，n( ≥3) is odd integer number，then G( z) =
Fn ( z) is also pseudo-prime function．

Theorem 3 F( z) = ( sin z) ecos z is prime，how-
ever，F2 ( z) is not pseudo-prime．

Obviously，F( z) = ( sin z) ecos z is of infinite or-
der． Liao Liangwen et al．［13］ gave a prime function of
finite order，whose even powers are not pseudo-prime． If
P is a non-constant polynomial such that P'( z) has on-
ly one zero z0 ，then P( z) = a ( z － z0 )

n + b ． It follows
Theorem 2，Theorem 3 and ［13］' s result that if n is
odd number and F( z) is a pseudo-prime function，then
P( F) is still pseudo-prime; if n is even number，then
exist some prime functions F( z) such that P( F) is not
pseudo-prime．

Conjecture 1 Let F be a pseudo-prime entire
function and P be a non-constant polynomial such that
P'( z) has two distinct zeros． Then P ( F ) is pseudo-
prime．

Conjecture 2［10］ Let F be a pseudo-prime en-
tire function and P be a non-constant polynomial． Then
F( P) remains to be pseudo-prime．

Note that one can exhibit some examples to show
that，in general．

Definition 2 Let f，F，g，G，h，H，k and K denote
entire functions． h is called a ( right) factor of H if and
only if H = k( h) and will be noted as h | H ． And K is
called a greatest common ( right) factor of F and G iff
K |F，K |G and if h is any other common factor of F and
G，then h | K ． If the only common factor of F and G is
a linear function，then two entire functions F and G to
be relatively prime． K is called a least common multi-

plier of F and G iff F |K and G | K，and if H is any oth-
er function satisfying H |Fand H |G，then K |H．

It has been shown that any collection of entire
functions E = { Fα} ，under a slightly general definition
of a ( right) factor，there always exists a common factor
for E，which may be a linear function［14］． However，it
follows from an example in［15］that a common multi-
plier of two functions may not exist．

Question 2 What is a necessary and sufficient
condition for two entire functions F and G to be rela-
tively prime? That is the only common factor of F and
G is a linear function．

It has been known that F( z) = z +
p( z) exp{ α( z) } is a prime function，where p is a pol-
ynomial (  0 ) and α( z) is a non-constant entire
function［16］． Which immediately shows that if neither f
nor g is linear，then a transcendental function of the
form f ( g ) must have infinitely many fixed points． In
fact，it had been a conjecture for long while that such a
function f ( g ) must have infinitely many fixed
points［16-17］． As a further study of the quantitative esti-
mate of the number of fixed points of composite func-
tions，Yang Chungchun et al．［17］proved the following
result．

Theorem 4 Let f( z) and g( z) be two transcen-
dental entire functions and P ( z ) be a non-constant
polynomial． Then there exists a set I having the lower
logarithmic density one such that

lim
r→!，r∈I

N( r + η，1 / ( f( g) － P) )
T( r，g) = !，

where η = 7crv ( r，g) －γ，1 /2 ＜ γ ＜ 1 and c =
arctan( 16 /13) + π /2 ．

The following conjecture was raised．
Conjecture 3［17-18］ Let f be a transcendental

meromorphic function，g be a nonlinear function，a( z)
be a small function of f． Then

N( r，1 / ( f( g) － a) ) ≠o( T( r，f( g) ) ) as r→!．
F． Gross［19］ posed the following question．
Question 3 Given any entire function f，does

there exist a polynomial Q such that f + Q is prime?
Above question was solved by Y． Noda［20］． More

precisely，he proved the following result．
Theorem 5 Let f( z) be a transcendental entire

function． Then the set
S( f) = { a a∈C，f( z) + az is not prime}
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is at most countable．
M． Ozawa et al．［21］ proved that for a certain kind

of entire functions f，that the cardinality of S ( f) is at
most 2．

Liao Liangwen et al．［22］ proved the following re-
sult．

Theorem 6 Let f be a transcendental entire
function of finite order． Denote Cf = { f( z) f '( z) =
0} ，i． e． Cf is the set of all critical values of f． If Cf is a
finite set，then for any constant a ≠ 0，f( z) + az is
prime，i． e．，the cardinality of S( f) is at most 1．

Theorem 7 If f is an entire function of finite or-
der with Cf being a finite set． Then for any constant a≠
0 and any nonconstant polynomial P，P( f( z) ) + az is
prime，the cardinality of S( P( f) ) is at most 1．

Conjecture 4 For any transcendental entire
function f，the maximal cardinal number of the excep-
tional set S( f) is 2．

2 Dynamics of Two Permutable En-
tire Functions

It has been a well known result that if two polyno-
mials p，q are permutable，then p，q have the same Julia
and Fatou sets． Thus far，the same conclusion holds for
two permutable transcendental entire functions f，g that
are of bounded type，that is the sets of finite singulari-
ties ( critical values and asymptotic values) of both f
and g are bounded［23］． T． W． Ng［24］，Liao Liangwen et
al．［25］ proved for some transcendental entire function f，
if g is permutable with f，then g = afn + b，where a，b
are constants． Thus，f and g have the same Julia and
Fatou sets． A natural question is

Question 4 What are the relations between two
permutable transcendental entire functions f and g? Is
there a complete classification of all pairs of nonlinear
permutable entire functions?

Liao Liangwen et al．［26］ proved that
Theorem 8 Let f and g be two permutable tran-

scendental entire functions． If there exist a transcen-
dental entire functions h，a rational function f1 and a
function g1 that is analytic in the range of h，such that
f( z) = f1 ( h( z) ) and g( z) = g1 ( h( z) ) ，then F( g) 
F( f) ，where F( f) denote the Fatou set of f．

It is easy to get the following result from Theorem 8．
Corollary 1 Let f and g be two permutable

pseudo-prime transcendental entire functions． If they
have a common transcendental factor，then they have
same Julia and Fatou sets．

Here，we mention I． N． Baker's question［27］:
Question 5 Let f and g be two transcendental

entire functions． If f and g are permutable，is F( f) =
F( g) ?

3 Functional Equations of Diophan-
tine Type

Conjecture 5［28］ If a Diophantine equation:
F( x，y) = 0 ，where F is an irreducible polynomial of
degree higher than 3，with rational numbers as the coef-
ficients，has none or finitely many rational solutions，
then the corresponding equation F( f，g) = 0 has none
or finitely many non-constant transcendental meromor-
phic solutions f and g． Here the two pairs of solutions
( f，g) and ( f( h) ，g( h) ) for any non-constant entire h
are said to be equivalent．

Conjecture 6 Let P denote a non-constant poly-
nomial． The only transcendental entire solutions for the
equation of the form: f 2 ( z) + p( z) g2 ( z) = 1 are

pairs: ( ± f，± g) ，with f = cos( p( z槡 ) u( z) ) and

g = sin( p( z槡 ) u( z) ) / p( z槡 ) ，where u( z) is an en-
tire function．

Definition 3 Let P( z，f，g) be a polynomial in f
and g，with entire or meromorphic functions of z as the
coefficients． A pair of meromorphic solutions ( f，g) of
the equation P( z，f，g) = 0 is called admissible if all
the coefficients of the equation are small functions of f
and g．

See［29］ for some results on the existence of ad-
missible solutions of functional equations of the form:

fn + a1 f
n － m + b1 = c( gn + a2g

n － m + b2 ) ，
where ai ( i = 1，2) ，bi ( i = 1，2) and c are meromor-
phic functions and none of them is identically zero．

Note，in the above result，n is assumed to be grea-
ter than 8，with m≥ 2 and n ＞ 2m + 3 ． It seems to be
quite difficult to deal with the above functional equa-
tions when the degree of f or g is less than 8．

Conjecture 7［29］ Let p，q be two polynomials
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both having at least three distinct zeros，and a ( z) be
any non-constant meromorphic function． Then the func-
tional equation: p( f) = a( z) q( g) has no admissible
solutions f and g．

Conjecture 8［30］ The functional equation: f 2 =
g3 + b( z) g + c，where b is a non-constant meromorphic
function and c is a constant，has no pair of admissible
solutions．

4 Complex Differential Polynomial
and Differential Equations

In complex differential equation theory，an inter-
esting research problem is to investigate whether an al-
gebraic differential equation can be reduced to some
standard forms if the algebraic differential equation ad-
mits a transcendental meromorphic solution． This kind
of results is usually called as a Malmquist-Yosida type
theorem． J． Malmquist［31］，K． Yosida［32］，I． Laine［33］，
Yang chungchun［34］，E． Hille［35］ and N． Steinmetz［36］

proved some Malmquist-Yosida type theorems of the
first order algebraic differential equations． Liao Liang-
wen et al．［37］ got a Malmquist-Yosida type theorem of a
certain type of the second order algebraic differential e-
quations． It is quite difficult to find a Malmquist-Yosida
type theorem for an arbitrary second order algebraic
differential equation． For the second-order differential
equation

f ″ = Ｒ( z，f，f ') ， ( 1)
where Ｒ is rational in z，f and f ' ，a classical and yet
unsolved conjecture is

Conjecture 9［38］ If the equation ( 1 ) has a
transcendental meromorphic solution，then the equation
can be transformed to the form:

f ″ = N( z，f) ( f ') 2 + M( z，f) f ' + L( z，f) ，
where L，M，N are rational functions in their argu-
ments．

It is useful but difficult to study the properties of
the meromorphic or entire solutions of some differential
equations． Some questions are related to other fields．
The following conjecture is related to Brück' s conjec-
ture in the uniqueness theory of meromorphic func-
tions．

Conjecture 10 If f is an entire solution of the

following differential equation
f( k) － eg( z) f － 1 = 0 ，

where g( z) is a transcendental entire function，then the
super order σ2 ( f) of f is infinite． The definition of
σ2 ( f) is following

σ2 ( f) = lim
r→+!

log logT( r，f)
log r ．

W． K． Hayman［39〗 began studying the value distri-
bution of the differential polynomials of meromorphic
functions by proving that if f is a transcendental entire
function，then f'fn assumes every non-zero complex
number infinitely many times，provided that n ≥ 2 ．
Since then，there are many research publications［40-44］

regarding the value distributions of the differential poly-
nomials of meromorphic functions． Ｒecently，Liao liang-
wen et al．［45］ got a general result about the value dis-
tributions of the differential polynomials of meromor-
phic functions．

Theorem 9 Let f be a transcendental entire
function，pn ( f) = anf

n + an－1 f
n－1 + … + a0 is a poly-

nomial with degree n，qm ( f) = bmf
m + bm－1 f

m－1 +… +
b0 is a polynomial with degree m and n≥ m + 1 ． Then
f 'pn ( f) + qm ( f) assumes every complex number α in-
finitely many times， except a possible value
qm ( － an－1 / ( nan ) ) ． On the other hand，if f 'pn ( f) +
qm ( f) assumes the complex value qm ( － an－1 / ( nan ) )

finitely many times，then either
( i) pn ( z) = an ( z + an－1 / ( nan ) )

n，qm ( z) is a
constant polynomial，which is qm ( － an－1 / ( nan ) ) ，and
f +an－1 / ( nan ) ，f ' have only finitely many zeros; or
( ii) f( z) = AeBz + an－1 / ( nan ) ，where A，B are

some constants; only when qm is non-constant and f is of
finite order．

Question 6 Is Theorem 9 valid for a meromor-
phic functions?

Question 7 If f ' is replaced by f( k) ( k ≥ 2) in
Theorem 9，is the conclusion in Theorem 9 still true?

Finally，the reader is suggested to read the follow-
ing related monographs［9-10，46-49］ for resolving the posed
conjectures or problems，as well as finding some new
problems or conjectures for further studies．
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亚纯函数分解理论，动力系统和函数方程中的一些
新的和未解决的老问题与猜想

廖良文1，杨重骏2

( 1．南京大学数学系，江苏 南京 210093; 2．深圳大学高等数学研究所，广东 深圳 518060)

摘要:提出了一些亚纯函数分解理论、动力系统、函数方程和微分多项式老的和新的问题与猜想，希望能够激起年轻研究人员
对这些问题的兴趣．
关键词: Nevanlinna值分布理论;函数分解理论;动力系统;函数方程;微分多项式
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