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Abstract: Being based on Picard’s and Borel’s theorems R. Nevanlinna published his paper and evolved a theo—

ry affiliated with his name. Since then the Nevanlinna theory has become an important subject in complex analy—

sis complex geometry and several complex variables. Some important developments in the past research are recalled

in this paper as well as a partial survey on some most recent progress in the study of Nevanlinna theory is given.
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0 Introduction

About ninety years ago Rolf Nevanlinna ' ex—
tended the classical theorems of Picard and Borel and
developed the value distribution theory of meromorphic
functions which is now called Nevanlinna theory. In
many ways Nevanlinna theory is a best possible theory
for both meromorphic and entire functions and it has
been used to prove numerous important results about
meromorphic and entire functions. Nevanlinna devel—
oped his theory in a series of papers from 1922—1925
and literature 1 is considered his most important pa—
per. In 1943 H. Weyl > made the following comment
about literature 1 :" The appearance of this paper
has been one of the few great mathematical events in
our century" .

The core of Nevanlinna theory consists of two
Main Theorems: the First Main Theorem ( FMT) and
the Second Main Theorem ( SMT) . The First Main The—
orem is considered to be a non-ecompact version of
Poincaré duality and we now have a satisfactory theory
for it. So this paper mainly devote to establishing the

Second Main-type Theorems.

1 Nevanlinna’s Second Main Theo—-
rem and Chern’s Geometric Ex—
tension

The Fundamental Theorem of Algebra states that
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for every non-constant complex polynomial P deg P =
np(a) where deg P is the degree of P which measures
the growth of P and n,( @) is the number of the roots
of P(z) = a on the complex plane C counting multi-
plicities. It is known that entire functions or more
generally the meromorphic functions on C behave in
many ways similar to the polynomials. To extend the
Fundamental Theorem of Algebra the firrst step is to
find the measurement of the growth of f. Hadamard
made the first discovery in this direction. Similar to
the algebraic case given an entire function there are
two different ways of measuring its rate of growth—its
maximum modulus on the disc of radius r( viewed as
a function of r) and the maximum number of times at
the value in the image is taken on this disc. The
insight is that these two rates of growth are
essentially the same the former being roughly the

in 1929

found the right substitute for the maximum modulus.

exponential of the latter. R. Nevanlinna '

He introduced the characteristic function T/(r) to
measure the growth of the meromorphic function f.
Starting from the PoissonJensen formula he was
able to derive a more subtle growth estimate for
meromorphic functions in what he called the Second
Main Theorem. It gives a quantitative version of the

classical Picard’s theorem for meromorphic functions.

( H98230414-0201)
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theory. Let f be a

meromorphic function on C. Denote the number of

We now describe his

poles of f on the disc {z||z] < r} by n/(r «)
counting multiplicity. We then define the counting

function N(r o) to be
N(r o) =n(0 «)logr +f n(r w) —n(0
0

de
) ;
here n (0 o) is the multiplicity if f has a pole at
z = 0. For each complex number a we define the
counting function N,(r a) to be

N/‘( ra) = Nl/(j?u) (r o).
The Nevanlinna’s proximity function m/(r o) is

defined by
2 . da
- 1 + 6 -
m(r ) = [ log |f{re) Iy
where log” x = max{0 log x}. For any complex number
a the proximity function m/(r a) of f with respect to
a is then defined by
mlr a) =my;,(re).
We note that m,(r a) measures how close f is
on average to a on the circle of radius r. Finally the
function (or height

Nevanlinna’s characteristic

function) of fis defined by
T(r) =m/(r o) + N(r o).

T/(r) measures the growth of f. For example: T)(r) =
O(1) if and only if fis constant; T(r) = O(logr) if
and only if f is a rational function.

The characteristic function T the proximity function
m and the counting function N are the three main
Nevanlinna functions. Nevanlinna theory can be
described as the study of how the growth of these
three functions is interrelated. The First Main Theorem
is a reformulation of the classical PoissonJensen
formula in complex analysis.

Theorem 1( First Main Theorem) Let f be non—
constant meromorphic on C. Then for all a € C

T(r) =m(ra) + N(r a) +0(1)

where O( 1) is a bounded term which is independent
of f.

Theorem 2( Nevanlinna’s Second Main Theorem)
Let @, **+ a, be a set of distinct complex numbers.

Let f be a non-constant meromorphic function on C.

Then for any for § > 0 the inequality

q

(¢ = 1)T(r) + N, (r) < ZN/-(r a) +

j=1

N{(r o) +O0(log T(r)) +élogr|,;

where || ; means the inequality holds for all r = r,
outside a set E C (0 + o) ( which depends on §)
with finite Lebesgue measure and N, (r) =N, (r
0) +2N(r o) =N, (r ).

The proof of Nevanlinna’s Second Main
Theorem is based on the following " Logarithmic
Derivative Lemma ( LDL) . "

Theorem 3( Logarithmic Derivative Lemma ( LDL))
Let f{ z) be a meromorphic function. Then for § > 0

J s Lo e =0 REEOA

S 2 ) log T(r) +

Llogr+0(1) |

In 1960 Shiing-Shen Chern® extended Nevanlinna’s
SMT to holomorphic mappings f: C— M where M is a
compact Riemann surface. Note that every meromorphic
function f on C can be viewed as a holomorphic map
f: C — P'.If we use the chordal distance on P' then

the proximity function can be reformulated as for

any a e P'
o 1 dé

m(r a) = JO log (o) a6

Thus to extend the theory from P' to M the first

af 2w

thing is to find a "suitable" distance function on M

such that the " First Main Theorem" holds. Let ?TU =
z

-1
ox Iy

u 2%&(1 =9+ andd = /= 1(a-d) /(4m).

1 (8u . au) ou 1 (Bu . au) _ Ju
— +i—] du = ——dz
ax dy

2 0z T2 0z

Note that dd® = ﬁag/( 24r) . Chern proved the
existence of the distance by solving the Poisson’s
equation on M

-2ddu = 0, ¢c (1)

for any given positive (1 1) Hform w on M where ¢ =

. The result of Chern states that the equation has
M

a solution with logarithmic singularity at a ( any)
given point on M. We denote the solution as u( x a)
when @ € M is given. Using this distance function
we define for fC—> M and a e M

mr a) =- jz W flre”) a) ;—z.
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If we let for a given positive (1 1) form w =

a( z) _ldz/\dZOHM

21
=[] e

then (1) gives by using the GreenJensen formula *
the following First Main Theorem for any a € M

T, (1) =m(ra) +N{(ra) +0(1).

Note that the function u(x a) on M can be
obtained by using the modern algebraic geometry
= (a) on M is ample
there is a metric ( norm || |) on ©,(D) where
©y( D) is the line bundle associated to D. Let s be
D) (i.e. (s) = D).

language: Since the divisor D

the canonical section of 7,(
Then we can take
= log | 5(#) |-
Indeed from the definition of the first Chern-form
~2ddu = - ddlog [ s(2) ||* = e/(A( D))
where ¢,( ©,( D)) is the first Chern form of ,( D)
with respect to the given metric. Hence the Poisson’s
= (D).

Furthermore by the Poincare-delong formula * we

u(x a):

equation (1) is satisfied for w:

have in terms of the currents
—ddlog  |s(x) |7 +D =c((D)).
Therefore from the Green-Jensen’s formula we
immediately get the FMT for any a € M
T, ,(r) =m(ra) + N(r a) +0(1)
= ¢(,(D)) and D = (a). Note that if

®, w, are two positive (1 1) forms then w, w, is

with w:

bounded since M is compact so the growth of

T;, () and the growth of T, () are the same.

Theorem 4 ° ( Chern’s SMT) Let M be a
compact Riemann surface. Let o = h 2;1(12 A dz
™

be a positive (1 1) form on M.Let f: C — M be a

non—constant holomorphic map. Let a, ‘- a, be

q
q

distinct points on M. Then for every § > 0 Z m(r

j=1
aj) + Tinc(m)(r) + Nfram( r) < O(log Ta)( rn) +
w) = ddlog h.

We discuss the consequences of the Theorem 4.

Slog r || 5 where Rice(

By the uniformization theorem a ( simply connected)
compact Riemann surface M is either biholomorphic
to the Riemann sphere P' the torus or the surface of

genus = 2.

When M = P' the Fubini-Study form w on P' is

given in terms of an affine coordinate w by

1
T 0] S
ddlog(1 + |w|*)
Thus Ric( w)
fon C (also being regarded as a holomorphic map f:
C—-P)

Tf Ric( w) ( r) = Tf 72(,,( r)

where
fo Lg\«
jo fm« 1+ \f\

The characteristic function wa( r) above is called

= —2w. So for any meromorphic function

=-2T,,(n)

ﬁ

de A de.

the Ahlfors-Shimizu characteristic function. T, ()
differs from the Nevanlinna’s characteristic function
defined earlier only by a constant. Hence Theorem 4
recovers Nevanlinna’s SMT.
For the torus (elliptic) case the canonical
metric is a flat metric i. e. there exists a positive ( 1

1) form w such that Ric( w)
Theorem 4 implies that

= 0. So in this case

q

dom{r @) +N; (1) <&T; (1) +8logr||,

=1

Ijn particular if a holomorphic map from C into
the complex torus omits one point on the torus then f
must be constant.

Finally for the surface of genus = 2 there
exists a positive (1 1) form w such that Ric( w) is
also a positive (1 1) form so that T,y () = 0.
Thus we have

Tpicgy (1) < €T} (1) +8logr = T, (1) +

slog r [,
This implies that T} ) (7) is bounded hence f
is constant. So there is no non-constant holomorphic

map from C into M if its genus = 2.
We now outline a proof of Theorem 4 here. Let

D; =(a)

;) 1 <j<gq be the divisors corresponding to

the points a; and let s; be the canonical section of
Ou( D) (so (s) = D,).Motivated the Poincare
metric on the punctured disc we consider

w

v = .
(log s 1))

q

H( s 11

1=
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Write
fw=T V dg A de.

Then by the Pomcaré—Lelong formula in terms

of the currents

q
dd” log ' = Y —dd log|f s |° +

j=

[ Ric(w) + Dy, de log(log |/ 5; 11*)

Applying the integral operator J j * to the

l¢lst
identity above and applying the Green-Jensen’s

formula we get
q

2] (log 1) do = 3 m(r a) + Ty (1)
l¢l=r =1

de .
jmm J;] f dd log log ||f S ||

We can normahze the metric on the line bundle so

that [|'s; || are small enough that

log(log || /s [|)* = 2log log (V" | f s |7

Thus
[9 aa tog(log [/ 5,1%)° =
0 l¢ st
1 dé
log log(i)f <
fm:r LS s 11772

1 de B
10%‘[\;\ rlog ||f 221T+0(1) =

<log T, ,(r) +0(1).

Using the calculus lemma argument *

log m/(r a;) +O(1)

we have
%J' (logT)do<O(log Tr(r)) +0dlogr | s
[¢l=r

So our goal is to estimate

L%nglf ¥

Note that if g(M) = 2(i.e. {a, -
empty set) then T.(r) = T, ,(r) hence in this case

a,} is an

the estimate is already done. In the general case we
follow the approach by Chern-Ahlfors: by a change of

variable formula

[ nr @) v(a) =

So using the First Main Theorem

jo j‘ . N(r a) ¥ a) <

[

|z |<r

[, 7o) v a)

where ¢ =

+0(1) =T, (1) +0(1)

¥ is a constant. Hence T.(r) <
M

¢T;,(r) + O(1). This finishes the proof.
Note that there is an alternative method of
estimating T.(7) in terms of T, (7). It is based on

the calculation of ( negative) curvature

: 1 2 cw
dd‘log (7) > 2{ - 8&)}
log || s; 1| * I's; 1 *(log ||'s; [|%)

(2)

for some positive constant ¢. This important alternative

method allows Griffiths and his school to make the
great progress in 1970°s in extending Chern’s result.

This leads the discussion in the next section.

2 The Results
Griffiths
In 1972 J. Carlson and P. Griffiths °

Chern’s
holomorphic mapping f: C* — M ( i.e.

of Carlson and

extended

result to differentially non-degenerate
the Jacobian
J(z2) # 0) where M is an algebraic projective
variety and n = dim M( we can just assume that n =
dim M) .

We introduce some notation. We first recall the
definition of height proximity and counting functions.
Recall the normalized Euclidean form on C" is ¢, =

dd"

z|*. Denote by @, = dd‘log|z|* and the Poincare—
form o = (dlog|2]?) A (ddlog|z|?) "".Then j o =
S,

1 where S, is the ball of radius r. Let (L h) be an

Hermitian line bundle on M. Define

= [ el Ao -
el aten

= |log———0 (4)
Lr ||f s |l
where s € H'(M L) and D = (s). We call
Ap(x) == log | s(x) | (5)
the Weil function where s € H'(M L) and D =
(5) . We can also define N( D r) in a similar way.

Ay (3)

We consider a positive line bundle L on M and ¢
divisors D; of holomorphic sections s; of the bundle

such that
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A) D, --- D, are manifolds intersect in general r\v=, . l - u
. ( ) D, a & (*') by < 72 R.z‘iﬁbo-
position; n: n =
(B) ge,(L) + ¢,(K,) > 0 where K,, is the

canonical bundle.
Theorem 5 ° ( The SMT by Carlson and Griffiths)
Let M be a projective variety of dimension n and

£iC" — M be a

differentially non-degenerate

q
holomorphic map. Let D = Z D; be a divisor on M
i

satisfying ( A) and ( B) . Let K, be the canonical line
bundle over M. Then for any § > 0

m(r D) + Ty (1) +N(S, 1) <

O(log T, (1)) +log |,

The proof is similar to the Riemann surface case

above. We consider

W=

0
- 2y 2
H s, 11 *(log [, 11%) )
where (2 is a volume form ( a global positive (n n)

form on M) . Write f ¥ = I'd, where @,

Euclidean volume form in C". Then similar to the

is the

above we can get

m(r D) + T, (r) +N(S, 1) <
A
O(log T(r)) +dlogr|

where
l/n n
f) t2n f d)o

Similar to the proof in the Riemann surface

A
case we need to bound T(r) in terms of T(L r).
Instead of (2) Carlson and Griffiths proved the
following claim:

Claim: ( a) Ric¥ > 0;(b) (Ric®)" > ¥;(c)
[ (Riew* < =
M\D

We now use the claim to finish the proof. We
show that

(f Ric¥) A ¢y = I ;.

In fact writing

2 R dz; N\ dz,.

Jj k=1

f Ric¥ =

Then by the claim
I'd, =f v<(f Ricp)"
where R = (R;). Use
det( R) V" < TrR /n

= nldetR @,

SO

But f (Ric¥) Ay =n"' z R,y Thus (f* Ric¥) A
=

oy = oIV "y
A
Now applying the above inequality we get T(r) <

T wiey( 1) for some positive constant ¢ where

/me Ltzn ff (Ricy) A d)

It remains to estimate T} ., ( r) . From the definition

Z dd’log(log || s; || )2
SO TfRiMI/( n < ‘]T/'L( r o+ T/'KM( r).

Using the condition ( B) that gc,(L) +¢,(K,) >
0 we get T) y,.p(7) < O(T, (1)) . This completes the

Ric? = g¢,(L) +¢,(K

proof of the Second Main Theorem.
Based on the above theorem Griffiths made the
following conjecture.
Conjecture 1( Griffiths)
variety of dimension n.Let ff1C — M be a

Let M be a projective

holomorphic map with Zariski-dense image. Let L be
a positive line bundle and let D, 1 < j < q be the
divisors of holomorphic sections s; of L such that the
and (B) holds. Let K, be the

canonical line bundle over M. Then

T,(r) + T, (1) <N (r D) +0(log T, (1)) +
Slog r || 5

We consider the case that M = P"(C).To

determine the canonical divisor we consider the

differential form 2 = dx; A dx, A >+ A dx, in the

on U,

%, 70} . There are no zeros or poles on U,. But if

conditions ( A)

affine coordinates (1 x, *** x,) = {x e
P"

we rewrite (2 with respect to (x, =+ 1 -

U, ={x € P"|x, # 0} we find

x,) on

Q= Ly A Adr, A A da,

n+l
0

Hence {2 has a pole of order n + 1 along x, = 0 and
K, =- (n + 1) H where H is the hyperplane at
infinity. So “\"( r) ==(n+1) Tf/p"(]) (7). Take D =
H, + - + H where H, -+ H, are hyperplanes in
general position then conjecture is the theorem
known as Cartan’s SMT for holomorphic curves
intersecting hyperplanes. We discuss it in the next

section.
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3 H. Cartan’s Result

In 1933 H. Cartan
theory to holomorphic mappings from C into P"( C)
P'(C) is the

n-dimensional complex projective space.To state

extended Nevanlinna’s
intersecting  hyperplanes where
g hyperp

Cartan’s result we rewrite the three Nevanlinna’s
= P"(C).Let %.(1) be the
hyperplane line bundle over P*( C).The metric is

= |z, |7 Sz PonU, ={z= 2z
z, # 0} where | z||

functions in the case M

given by h_(
iz, € P
that ¢,( (1) = ddlog | z | ?
the Fubini-Study form on P"( C). Let f = f;: -
f, :C—P"(C) be a holomorphic map where f; -

/. are entire functions without common zeros. The

= max‘z‘ SO

O<is<n

= wps where wgyg is

Nevanlinna-Cartan height function T, (1) (we

T(r) ) is from (3)

=[S

Any holomorphic section s of 7,,(1)

also simply denote it by

T(r) =T, ol 1

is given by

S zoiiz, ) = agzy + tt + a,z, for some complex
numbers a, - a,(i.e. s = {s,} wheres, = (ayz +*** +
az,) /z,on U ={ z:+:z, e Pz, # 0}.

Obviously (s) = H ={ 2z, iz, e P'(C):ayz +
= 0} which is a hyperplane in P"( C).
H) is given by

T+ a,z

n®n

Thus the proximity function m/( r

from ( 4)
21 . d9
_ i6 =Y _
m{r H) == [ log | s(f{re") || 5
21 i . L” d0
o P ) e LY d6
o8y o L e |2 O
where L is the linear form L( x) = agx, + *** + a,%,
IL1 = max[q, ] and ] = max|f|.

Note that the Weil function is A,(x) =

log -1 ’ for x € P"\H. The counting function
| L( )
N/(r H) is defined as
¢ ndt H)
N(r H) = j e

0

where r, > 0 is fixed n/(r H) =# of points in |z <

r with L(f) (z) = 0 counting multiplicities.

° (Cartan’s SMT) Let f£C —

be a linearly non-degenerate holomorphic
H, - H, be

position in P"( C) . Then for any & > 0

Theorem 6
Pll( C)
map. Let

hyperplanes in general

z{mf(r H) <(n+1+&)T(r) |.

lj\lote that Cartan actually obtained the stronger
result: the SMT with truncations.

In our applications we need the general form of
H. Cartan’s result where the "general position"
condition for the given hyperplanes is dropped ’
The new version is basically equivalent to the
original version but is much easier to use.

Theorem 7’ ( The General Cartan’s Theorem) Let
fiC — P(C) be a
holomorphic map. Let H,

linearly non-degenerate

* H,(or linear forms L,
- L,) be arbitrary hyperplanes in P*( C) . Then for

every ¢ > 0

o de
Jo maijZK)\ ’) E$(n+1 +&) T(r) |
where the maximum is taken over all K C {1 ‘- ¢}

such that the linear forms L; j € K are linearly
independent.

H, -+ H, in general position

For hyperplanes
we have the following product to the sum estimate ’

Lemma 17 (Product to the sum estimate)

Let H, -+ H_ be hyperplanes in P"( C) located in
general position. Denote by T the set of all injective
maps u: {0 1 - n}—>{1 - q}. Then

q
;mfrH fo Lnea%(;)\,,()f(re))f+0()

Therefore if H,

then the general version easily implies H. Cartan’s

* H, are in general position

original theorem. The proof of the General Cartan’s
Theorem ( as well as the original Cartan’s theorem)
uses the LDL stated above (see 7 for details) .

In the rest of the paper we discuss some recent
developments in establishing Second Main Theorem
for holomorphic curves into an arbitrary projective
of H. Cartan. The

method indeed is motivated by the techniques from

variety extending the result

Diophantine approximation in number theory. In
2002 in the paper entitled "A subspace theorem
approach to integral points on curves" P. Corvaja
and U. Zannier started the program of studying
integral points on algebraic varieties by using
Schmidt’s subspace theorem in Diophantine approximation.
Since then the program has led a great progress in

the study of Diophantine approximation *** . Tt is
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known that the counterpart of Schmidt’s subspace in

Nevanlinna theory is H. Cartan’s Second Main
Theorem. In recent years the method of P. Corvaja
and U. Zannier has been adapted by a number of
authors and a big progress has been made in
extending the Second Main Theorem to holomorphic
mappings from C into arbitrary projective variety X
intersecting general divisors by using H. Cartan’s

original theorem '**' . We call such method "a

Cartan’s Second Main Theorem approach". We

discuss this method in the next section.

4 Holomorphic Curves into Projective
Varieties

In this section we use the "Cartan’s Second
Main Theorem approach" to establish the Second
Main Theorem for holomorphic curves into an

arbitrary projective variety intersecting general
divisors.
4.1 The Basic Theorem

The starting point is the following result which
is basically a reformulation of H. Cartan’s theorem
stated above. We call it the "Basic Theorem". Its
proof can be found in 21

Theorem 8( The Basic Theorem) Let X be a
complex projective variety and let D be an effective
Cartier divisor on X let V be a nonzero linear

subspace of H'(X (D)) and let s, - s, be
nonzero elements of V. Let /: C— X be a holomorphic
map with Zariski-dense image. Then for any ¢ > 0
2
fo mjaxjg7 )\Aj(f( re)) ;—z < (dim V+e) T, p(7) |
where the set J ranges over all subsets of {1 - ¢}
such that the sections (s;) ;_, are linearly independent.
4.2 The Nevanlinna Constant

The above Basic Theorem motivates the notion

of the Nevanlinna constant introduced by the

14 19

author . Let X be a normal projective variety and

D be an effective Cartier divisor on X. For any
section s € H'(X (D)) and prime divisor E on X

we use ord,s or ord,(s) to denote the coefficient of
E in the divisor (s) where (s) is the divisor on X
associated to s. We also sometimes call ord,s the

multiplicity of E in (s) .

Definition 1 Let X be a complex projective
variety let D be an effective Cartier divisor on X and
let # be a line sheaf on X.If X is normal then we
define

Nev( % D) = I\H‘lf#( dim V) -

Here the inf is taken over all triples (N Vy wy)
such that N € Z > 0 V, is a linear subspace of
H(X ") withdim V, > 1 and u, >0 is a positive
real number that satisfy the following property. For
all P € Supp D there exists a basis B of V,, with

z ord,(s) = uyord,( ND)

ey
for all irreducible component E of D passing through
P.If there are no such triples (N V u) then
Nev( %2 D) is defined to be + o .For a general
projective variety X Nev( % D) is defined by
pulling back to the normalization of X.

Note that in 19
only defined for % = 7,( D) which is denoted by
Nev(D): = Nev(@(D) D). The definition given
and would be

the Nevanlinna constant was

above is indeed more general

potentially useful.
Theorem 9 “ ( Ru)

projective variety let D be an effective Cartier

divisor and % be a line sheaf on X with dim H°( X

M) =1 for some N > 0. Then for every & > 0
m(r D) < (Nev(Z D) +&)T, (1) |

holds for any holomorphic mapping f: C — X with

Let X be a complex

Zariski-dense image.

The proof uses the Basic Theorem above
together with the properties of Weil functions ( see
(5) for the definition of the Weil function) stated
below.

Lemma 2 “*” The Weil functions A, for
Cartier divisors D on a complex projective variety X
satisfy the following properties.

(1) Additivity: If A, and A, are Weil functions
for Cartier divisors D, and D, on X respectively then
A, + A, extends uniquely to a Weil function for D, + D,.

(ii) Functoriality: If A is a Weil function for a
Cartier divisor D on X and if ¢: X" — X is a
morphism such that ¢(X?) ¢ SuppD then x >
A(p(x)) is a Weil function for the Cartier divisor

d)*DonX’.
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(iii)) Normalization: If X = P" and if D = {z, =
0} C X is the hyperplane at infinity then the
function
max{ |z, | = |z, [}

‘xo‘

Al ziin, )= log

is a Weil function for D.

(iv) Uniqueness: If both A, and A, are Weil
functions for a Cartier divisor D on X then A, = A, +
o(1).

(v) Boundedness from below:If D is an
effective divisor and A is a Weil function for D then
A is bounded from below.

(vi) Principal divisors:If D is a principal
divisor (f) then — log|f| is a Weil function for D.

Outline of the proof of Theorem 9. Denote by o,
the set of all prime divisors occurring in D so we can

write

D = Z ord,( D) E.

Eeay

Let
> ={0'C0'0‘ NE = J}.

Eeo
For an arbitrary x € X we can pick 0 € 2 ( depends
on x) for which
Ap(x) <A, () +0(1)
where D . = z ord,( D) E. Now for each o € X
Eeo

by definition there is a basis B, of V, is a linear

o

subspace of H’( X %") such that
2 ord,(s) = uyord,( ND)

seB,

at some ( and hence all) points P € [ E. Since X is
Eeo

finite { B, [0 € X} is a finite collection of bases of

Vy. Thus we property of Weil

function (see (v) in Lemma 2) that if D, = D,

then A, = A, + O(1) we get that

have using the

A(x) +0(1).

1
‘ < — m:
/\ND( x) Moy {rned;'(sEZB

The theorem can thus be derived by taking x =

a

Alre®) by taking integration and then by applying
the Basic Theorem above.

Corollary 1 Let D be an ample divisor on a
complex projective variety X.If Nev(D) < 1 then
every holomorphic map f: C — X\D is not Zariski
dense i.e. the image of f must be contained in a

proper subvariety of X.

We can derive the known Second Main Theorem
type results by simply computing the Nevanlinna
constant. We first provide the following example to
see how to compute the Nevanlinna’s constant.

Example 1 LetX =P"'and D = H, +* + H,
where H,
position. We take N = 1 and consider V,: = H’( P”

= H, are hyperplanes in P" in general

A D)) =H(P" F(q)). Then dimV, = (q+n)‘

n

For each P € Supp D since H,
position P e H, (N === N H, with {i,

*+ H, are in general
i) {1
-+ ¢} and [ < n. Without loss of generality we can
just assume H, = {z =0} - H, = {z =0} by
taking proper coordinates for P". Now we take the
basis B = {z0 - Zn
H(P" ,.(q)) . Then for each irreducible component
E of D containing P say E = {z, =0} with1 </, <
[ we have ord;{z =0} =0 forj#j, ord,{z, =0} =
1 and thus ord;D = 1. On the other hand

zordEs = Z’ij“ :niIZ(i0+...+i”) =

sebB

q (q+n)= q
n+l1\ p n+1

iy + = +1, = q} for V| =

dimV, where in above the sum is

taken for all ¢ = (7, -+ i,) with iy, + = +i, = ¢

and we used the fact that the number of choices of

T =iy v i) withiy 4 +i, = g s (q +n).Thus

n

q
+1

Nev( D) < dimV, u, = (n+1) “q.
The above example together with Theorem 9

we can take u, = dimV, and hence
n

recovers the result of H. Cartan stated earlier under
the slightly stronger assumption that "f is algebraically
non-degenerate" .

For D = D, + *+ + D, where D, -+ D, are
hypersurfaces of same degree in P" in general
position similar to above but using a more sophisticated
"multi-index filtration" argument we can also show
that Nev(D) < (n + 1) /¢.Thus Theorem 9 recovers
the following earlier result.

Theorem 10 " ( Ru’s SMT for hypersurfaces) Let
f: C—P'(C) be a holomorphic map with Zariski-dense
== D, be hypersurfaces in P"( C) of

degree d; located in general position. Then for every

image. Let D,
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e >0

q
Zdj_lmf(r D) <s(n+1+&)T(r) |.
=

More generally let X be a complex projective
variety and let D = D, + > + D where D, - D, are
effective Cartier divisors such that each D; 1 <j <
g is linearly equivalent to A for some fixed ample
divisor A on X.Then we can show that Nev( D) <
(dim X + 1) /¢.So again Theorem 9 recovers the
following result.

Theorem 11 * ( Ru)

complex projective variety of dimension n. Let D,

Let X be a smooth

* D, be effective Cartier divisors such that each D;
l < j < q is linearly equivalent to d;/A for some
positive integers d; where A is a fixed ample divisor
on X. We also assume that D, -+ D, are in general
position on X. Let f: C — X be a holomorphic map

with Zariski-dense image. Then for every & > 0

q
zfdjflmf(r DJ-) <(n+1+¢ TfA(r) I -
“

4.3 The Recent Result of Ru-Vojta

Using the filtration and overall method in 16
Ru Min and P. Vojta established the following SMT
for holomorphic curves into an arbitrary algebraic
variety intersecting general divisors on X.To state
the result we first give some definition. Let % be a
line sheaf on X we use h°( %) to denote dim H’( X
Z) and Z( — D) to denote the sheaf ¥ ® A - D)
for a given divisor D on X.

Definition 2 Let % be a line sheaf and D be a
nonzero effective Cartier divisor on a projective
variety X. We define

NR° (2™
S H( (- mD))

m=1

v(£ D): = limNsup

where N passes over all positive integers such that
(4" - D)) # 0.1f no such N exists then we
define y( 2 D) =+ oo ( Note that | #"| does not
have to be base point free) .

Theorem 12 *' ( Ru-Vojta)

projective variety and let D,

Let X be a smooth
=+ D, be effective
Cartier divisors in general position on X. Let £ be a
line sheaf on X with A°( 4") =1 for N big enough.
Let f1C — X be

Zariski-dense image. Then for every & > 0

a holomorphic map with

q
z mf( r Dj) < ( 1II<1?<)EJY( Z D/) +&) Tf A1) |-
j=1 =
An earlier result of the dimension 2 case is

obtained by S. Hussein and Ru Min > . To use

Theorem 12 we compute y(L D)) with L = D: = D, +

= + D, where each D, 1 < j < ¢ is linearly

equivalent to a fixed ample divisor A on X. We write

R°(D): = k(A D)).By the RiemannRoch theorem
with n = dim X we have
B(ND) = K(qha) = LMD o
n!
and
h°(ND - mD)) = h°((gN - m)A) =
(gN —m)"A" /n! +o(N").
Thus
nqN-1
DAAND = mD) = =1 + o N) =
m=1 ’ n:i=o
An(qN_l)n+l Dl
—(n+1)! +o( N").
Hence
noAn 1 n+1
YD D) = lim ML ol Vo)
No= A"(gN - 1)"" /(n + 1)1 +o( N'")

(n+1) .
Thus Theorem 12 again implies Theorem 11
stated earlier.
Sketch of the proof of Theorem 12. Choose &, >
0 &, > 0 and positive integers N and b such that

n NR(Z") + &)
(1 +-) max —
I<i<q 2 ho( (//W( - mDL) )
m=1
1max'y( 2 D) +e. (6)
Sisq )
Let
S ={o C{l = g}|NSupp D, # B}.

jeo

Foro e X let
A” :{a :(ai) EN#U‘Z“;’ :b}

ieo

Fora € A, one defines the ideal .7( x) of 7 by
70 = YAal-Son) (7
7

ieo

where the sum is taken for all b € N* with z ab, =
bx. Let

Tloa), = H(X £"® 7(x))
which we regard as a subspace of H'(X % ") and
let

1 TP
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By Theorem 3.6 in 21
4.14in 16 ) we have

( see also Proposition

Floya) = mln(h0 —mDi))).

I=<isq

v Zho (

el

For any nonzero s € H'(X ") we also define
wa(s) =sup{x e R":s € 7(o;a),}. (8)
Let ..., be a basis of H(X £ ") adapted to

the above filtration {.%( o; a) .} ,_g+- By Remark 6.6

1
mSE%;a/’La( s) . Hence

2 Ho(s) = min zho( 7N

. > Isisq
seByq m=1

in 21 F(o a) =

-mD)). (9)

i

It is important to note that there are only
fininitely many ordered pairs (o a) with o € X
anda € A,.

letc e S ae A, ands e H'(X
s # 0. Since the divisors D,

i

M) with
are all effective it
suffices to use only the leading terms in (7). The
union of the sets of leading terms as x ranges over the
interval O u,(s 1is finite and each such b occurs
in the sum (7) for a closed set of x. Therefore the

supremum ( 8) is actually a maximum.

Similarly we have

L T(

=2 7"(-

is the set of minimal elements of

> b.D,)

ieo

where K = K

oas

{b eN": 2 a;b,

ieo

= bu,(s)} relative to the product

partial ordering on N*. This set is finite so we have

for any prime divisor £ on X

ord,(s) = mm 2 b.ord,( D)) . (10)

ieo

For a basis % of H'(X £ ") denote by (.%)
the sum of the divisors (s) for all s € .%. Let E be a
prime divisor on X and letv v, v,(i =12 - q)
be the multiplicities of £ in D (.%,,) and D,
respectively. We claim that we can find some a such

that

oo = min T2 ) ) (1
SISUm =1

If v = 0 then there is nothing to prove so we

assume that v > 0. Fori € o let

&, = v,/ v (12)

Note that v, = 0 forall7 ¢ o so 211 = Zvi =

ieo i=1

hence Z t; = 1. From the assumption that D, --- D

ieo

lie in general position we have #o < n. Therefore

b<d [(b+n)t,]

(a;) € A, such that
t,=a,/(b+n)
Forany s e .7,

< b +n and we may choose a =

for all i e o. (13)
let v, be the multiplicity of £
in the divisor (s) . Using (10) . (12) ~ (13) and

2 a;b, = bu,(s

lE(’
v, = mianivi = (mmth)U
bEKiezr

ieo

= (2 w90 (14)

we get

(manab/ b+n))

ieo

where the set K = K is as in ( 10) . Combining

(14) and (9) then gives
U[f a 1 b
Yoa _ 1 > >
U 1} . EZ”‘YvaUY b + ns EZ//(TIQM‘,( S)
b

min 2 (<Y -mD,))

b+n I<isq =)
which gives (11) .
From (11) we get

( ‘%(r;a) 2

Hence from the property of Weil functions ( see

®©

(min 3 h°(#"(=mD)))D.

b+n

Lemma 2) it gives

o

Ay, +0(1) = —(min ¥ KL (=mD))) A, (15)
oa +n'lsisq mel
Write
U Ba =B U U LBy ={s = s}
Foreach i =1 .- T, let J, € {1 -+ T,} be the

subset such that .5, = {s,:j € J;}. Then by (15)

b +n( min Zho ('m’

Isisqn =)

_mDi))))\n(x) =
11215;1)\ (x) + 0 = 1122);]]2;)\ x + O )
Hence by taking x = f{z) and taking the integration

we get

(mlHE

Isisq, =1

b R £ —mDi)))m/(r D) <

f maXZ/\ (A re’ )

0l1<isT &,

40 L o1y, (16)

On the other hand by the general Cartan’s

Theorem with g, in place of & we have

[ may 34,0 4 < (007
T 0. (17

Using T, ,v(r) = NT, ,(r) the theorem is proved
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by combining (6) (16) and (17).
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