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0 Introduction
About ninety years ago，Ｒolf Nevanlinna［1］ ex-

tended the classical theorems of Picard and Borel，and
developed the value distribution theory of meromorphic
functions，which is now called Nevanlinna theory． In
many ways，Nevanlinna theory is a best possible theory
for both meromorphic and entire functions，and it has
been used to prove numerous important results about
meromorphic and entire functions． Nevanlinna devel-
oped his theory in a series of papers from 1922—1925，
and literature［1］is considered his most important pa-
per． In 1943，H． Weyl［2］ made the following comment
about literature ［1］: " The appearance of this paper
has been one of the few great mathematical events in
our century" ．

The core of Nevanlinna theory consists of two
Main Theorems: the First Main Theorem ( FMT ) and
the Second Main Theorem ( SMT) ． The First Main The-
orem is considered to be a non-compact version of
Poincaré duality，and we now have a satisfactory theory
for it． So this paper mainly devote to establishing the
Second Main-type Theorems．

1 Nevanlinna' s Second Main Theo-
rem and Chern' s Geometric Ex-
tension
The Fundamental Theorem of Algebra states that

for every non-constant complex polynomial P，deg P =
nP( a) ，where deg P is the degree of P which measures
the growth of P and nP ( a) is the number of the roots
of P( z) = a on the complex plane C，counting multi-
plicities． It is known that entire functions，or more
generally the meromorphic functions on C，behave in
many ways similar to the polynomials． To extend the
Fundamental Theorem of Algebra，the firrst step is to
find the measurement of the growth of f． Hadamard
made the first discovery in this direction． Similar to
the algebraic case，given an entire function，there are
two different ways of measuring its rate of growth—its
maximum modulus on the disc of radius r( viewed as
a function of r) and the maximum number of times at
the value in the image is taken on this disc． The
insight is that these two rates of growth are
essentially the same，the former being roughly the
exponential of the latter． Ｒ． Nevanlinna［1］，in 1929，
found the right substitute for the maximum modulus．
He introduced the characteristic function Tf ( r) to
measure the growth of the meromorphic function f．
Starting from the Poisson-Jensen formula，he was
able to derive a more subtle growth estimate for
meromorphic functions in what he called the Second
Main Theorem． It gives a quantitative version of the
classical Picard's theorem for meromorphic functions．
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We now describe his theory． Let f be a
meromorphic function on C． Denote the number of
poles of f on the disc { z z ＜ r} by nf ( r，∞ ) ，
counting multiplicity． We then define the counting
function Nf ( r，∞ ) to be

Nf ( r，∞ ) = nf ( 0，∞ ) log r + ∫
r

0
［nf ( r，∞ ) － nf ( 0，

∞) ］dtt ，

here nf ( 0，∞ ) is the multiplicity if f has a pole at
z = 0． For each complex number a，we define the
counting function Nf ( r，a) to be

Nf ( r，a) = N1 / ( f －a) ( r，∞ ) ．
The Nevanlinna's proximity function mf ( r，∞ ) is
defined by

mf ( r，∞ ) = ∫
2π

0
log + f( reiθ )

dθ
2π
，

where log+ x = max{ 0，log x} ． For any complex number
a，the proximity function mf ( r，a) of f with respect to
a is then defined by

mf ( r，a) = m1 / ( f －a) ( r，∞ ) ．
We note that mf ( r，a) measures how close f is，

on average，to a on the circle of radius r． Finally，the
Nevanlinna's characteristic function ( or height
function) of f is defined by

Tf ( r) = mf ( r，∞ ) + Nf ( r，∞ ) ．
Tf ( r) measures the growth of f． For example: Tf ( r) =
O( 1) if and only if f is constant; Tf ( r) = O( log r) if
and only if f is a rational function．

The characteristic function T，the proximity function
m and the counting function N are the three main
Nevanlinna functions． Nevanlinna theory can be
described as the study of how the growth of these
three functions is interrelated． The First Main Theorem
is a reformulation of the classical Poisson-Jensen
formula in complex analysis．

Theorem 1( First Main Theorem) Let f be non-
constant meromorphic on C． Then，for all a∈ C，

Tf ( r) = mf ( r，a) + Nf ( r，a) + O( 1) ，
where O( 1) is a bounded term which is independent
of f．

Theorem 2( Nevanlinna's Second Main Theorem)
Let a1，…，aq be a set of distinct complex numbers．
Let f be a non-constant meromorphic function on C．
Then，for any for δ ＞ 0，the inequality

( q － 1) Tf ( r) + Nram，f ( r) ≤ ∑
q

j = 1
Nf ( r，aj ) +

Nf ( r，∞ ) + O( log Tf ( r) ) + δlog r‖δ，

where ‖δ means the inequality holds for all r ≥ r0
outside a set E  ( 0，+ ∞ ) ( which depends on δ)
with finite Lebesgue measure，and Nram，f ( r) = Nf ' ( r，
0) + 2Nf ( r，∞ ) － Nf ' ( r，∞ ) ．

The proof of Nevanlinna's Second Main
Theorem is based on the following " Logarithmic
Derivative Lemma ( LDL) ． "

Theorem 3( Logarithmic Derivative Lemma ( LDL) )
Let f( z) be a meromorphic function． Then，for δ ＞ 0，

∫
2π

0
log+ f '

f ( re
iθ)

dθ
2π≤
( 1 + ( 1 + δ) 2

2 ) log Tf ( r) +

δ
2 log r + O( 1) ‖δ ．

In 1960，Shiing-Shen Chern［3］ extended Nevanlinna's
SMT to holomorphic mappings f: C→M where M is a
compact Ｒiemann surface． Note that every meromorphic
function f on C can be viewed as a holomorphic map
f: C→ P1 ． If we use the chordal distance on P1，then
the proximity function can be re-formulated as，for
any a∈ P1，

mf ( r，a) = ∫
2π

0
log 1
‖f( reiθ ) ，a‖

dθ
2π

．

Thus，to extend the theory from P1 to M，the first
thing is to find a " suitable" distance function on M

such that the " First Main Theorem" holds． Let u
z

=

1
2
u
x

－ i u
( )y ，

u
z

= 1
2
u
x

+ i u
( )y ，u = u

z
dz，

u = u
z
dz，d =  + ，and dc

槡= － 1 (  － )( 4π) ．

Note that ddc
槡= － 1 ( 2π) ． Chern proved the

existence of the distance by solving the Poisson's
equation on M

－ 2ddcu = ωc ( 1)
for any given positive ( 1，1) -form ω on M，where c =

∫Mω． The result of Chern states that the equation has

a solution with logarithmic singularity at a ( any)
given point on M． We denote the solution as u( x，a)
when a ∈ M is given． Using this distance function，
we define，for f: C→ M and a∈ M，

mf ( r，a) = － ∫
2π

0
u( f( reiθ ) ，a) dθ2π

．
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If we let，for a given positive ( 1，1) -form ω =

a( z) 槡－ 1
2π

dz∧ dz on M，

Tf，ω ( r) = ∫
r

0

dt
t ∫ ζ ≤t

f* ω，

then ( 1) gives，by using the Green-Jensen formula［4］，
the following First Main Theorem，for any a∈ M，

Tf，ω ( r) = mf ( r，a) + Nf ( r，a) + O( 1) ．
Note that the function u( x，a) on M can be

obtained by using the modern algebraic geometry
language: Since the divisor D = ( a) on M is ample，
there is a metric ( norm ‖·‖) on OM ( D) where
OM ( D) is the line bundle associated to D． Let s be
the canonical section of OM ( D) ( i． e． ( s) = D) ．
Then we can take

u( x，a) : = log‖s( x) ‖．
Indeed，from the definition of the first Chern-form，
－ 2ddcu = － ddc log‖s( x) ‖2 = c1 ( OM ( D) ) ，

where c1 ( OM ( D) ) is the first Chern form of OM ( D)
with respect to the given metric． Hence the Poisson's
equation ( 1) is satisfied for ω: = c1 ( OM ( D) ) ．
Furthermore，by the Poincare-Lelong formula［4］，we
have，in terms of the currents，

－ ddc log［‖s( x) ‖2］+ D = c1 ( OM ( D) ) ．
Therefore，from the Green-Jensen's formula，we

immediately get the FMT，for any a∈ M，
Tf，ω ( r) = mf ( r，a) + Nf ( r，a) + O( 1)

with ω: = c1 ( OM ( D) ) and D = ( a) ． Note that，if
ω1，ω2 are two positive ( 1，1) forms，then ω1ω2 is
bounded since M is compact，so the growth of
Tf，ω1 ( r) and the growth of Tf，ω2 ( r) are the same．

Theorem 4［3］ ( Chern's SMT) Let M be a

compact Ｒiemann surface． Let ω = h 槡－ 1
2π

dz ∧ dz

be a positive ( 1，1) form on M． Let f: C → M be a
non-constant holomorphic map． Let a1，…，aq be

distinct points on M． Then，for every δ ＞ 0，∑
q

j = 1
mf ( r，

aj ) + Tf，Ｒic( ω) ( r) + Nf，ram ( r) ≤ O( log Tf，ω ( r) ) +
δlog r‖δ，where Ｒic( ω) = ddc log h．

We discuss the consequences of the Theorem 4．
By the uniformization theorem，a ( simply connected)
compact Ｒiemann surface M is either biholomorphic
to the Ｒiemann sphere P1，the torus or the surface of
genus ≥ 2．

When M = P1，the Fubini-Study form ω on P1 is
given in terms of an affine coordinate ω by

ω = 1
( 1 + ω 2 ) 2

槡－ 1
2π

dω∧ dω =

ddc log( 1 + ω 2 ) ．
Thus Ｒic( ω) = － 2ω． So，for any meromorphic function
f on C ( also being regarded as a holomorphic map f:
C→ P1 ) ，

Tf，Ｒic( ω) ( r) = Tf，－2ω ( r) = － 2Tf，ω ( r) ，
where

Tf，ω ( r) = ∫
r

0

dt
t ∫ ζ ≤t

f* ω =

∫
r

0

dt
t ∫ ζ ≤t

f ' 2

( 1 + f 2 ) 2
－槡 1
2π

dζ∧ dζ．

The characteristic function Tf，ω ( r) above is called
the Ahlfors-Shimizu characteristic function． Tf，ω ( r)
differs from the Nevanlinna's characteristic function
defined earlier only by a constant． Hence Theorem 4
recovers Nevanlinna's SMT．

For the torus ( elliptic) case，the canonical
metric is a flat metric，i． e． there exists a positive ( 1，
1) form ω such that Ｒic( ω) = 0． So in this case，
Theorem 4 implies that

∑
q

j = 1
mf ( r，aj ) + Nf，ram ( r) ≤ εTf，ω ( r) + δlog r‖δ ．

In particular，if a holomorphic map from C into
the complex torus omits one point on the torus，then f
must be constant．

Finally，for the surface of genus ≥ 2，there
exists a positive ( 1，1) form ω such that Ｒic( ω) is
also a positive ( 1，1) form，so that Tf，Ｒic( ω) ( r) ≥ 0．
Thus we have

Tf，Ｒic( ω) ( r) ≤ εTf，ω( r) + δlog r = ε'Tf，Ｒic( ω) ( r) +
δlog r‖δ ．

This implies that Tf，Ｒic( ω) ( r) is bounded，hence f
is constant． So there is no non-constant holomorphic
map from C into M if its genus ≥ 2．

We now outline a proof of Theorem 4 here． Let
Dj = ( aj ) ，1≤ j≤ q，be the divisors corresponding to
the points aj，and let sj be the canonical section of
OM ( Di ) ( so ( sj ) = Dj ) ． Motivated the Poincare
metric on the punctured disc，we consider

Ψ = ω

∏
q

j = 1
( ‖sj‖

2 ( log‖sj‖
2 ) 2 )

．
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Write

f* Ψ = Γ －槡 1
2π

dζ∧ dζ．

Then，by the Poincaré-Lelong formula，in terms
of the currents，

ddc［log Γ］ = ∑
q

j = 1
－ ddc［log‖f* sj‖

2］+

f* Ｒic( ω) + Df，ram －∑
q

j = 1
ddc［log( log‖f* sj‖

2 ) 2］．

Applying the integral operator ∫
r

0

dt
t ∫ ζ ≤t

· to the

identity above and applying the Green-Jensen's
formula，we get
1
2 ∫ ζ = r
( log Γ) dθ = ∑

q

j = 1
mf ( r，aj ) + Tf，Ｒic( ω) ( r) +

Nf，ram( r) －∑
q

j =1
∫
r

0

dt
t ∫ ζ ≤t

ddc［log( log‖f* sj‖
2) 2］．

We can normalize the metric on the line bundle so
that ‖sj‖ are small enough that
log( log‖f* sj‖

2 ) 2 = 2log log ( 1 ‖f* sj‖
2 ) ．

Thus

∫
r

0

dt
t ∫ ζ ≤t

ddc［log( log‖f* sj‖
2 ) 2］ =

∫
ζ = r

log log 1
‖f* sj‖

( )2
dθ
2π≤

log∫
ζ = r

log 1
‖f* sj‖

2
dθ
2π

+ O( 1) =

log mf ( r，aj ) + O( 1) ≤ log Tf，ω ( r) + O( 1) ．
Using the calculus lemma argument［4］，we have
1
2 ∫ ζ = r
( log Γ) dθ≤O( log TΓ ( r) ) + δlog r‖δ ．

So our goal is to estimate

TΓ ( r) = ∫
r

0

dt
t ∫ ζ ≤t

Γ －槡 1
2π

dζ∧ dζ =

∫
r

0

dt
t ∫ ζ ≤t

f* Ψ．

Note that if g( M) ≥ 2( i． e． { a1，…，aq} is an
empty set) ，then TΓ ( r) = Tf，ω ( r) ，hence in this case
the estimate is already done． In the general case，we
follow the approach by Chern-Ahlfors: by a change of
variable formula，

∫Mnf ( r，a) Ψ( a) = ∫
z ＜ r

f* Ψ．

So，using the First Main Theorem，

∫
r

0

dt
t ∫ z ＜ t

f* Ψ = ∫MNf ( r，a) Ψ( a) ≤

∫MTf，ω ( r) Ψ( a) + O( 1) = cTf，ω ( r) + O( 1) ，

where c = ∫MΨ is a constant． Hence TΓ ( r) ≤

cTf，ω ( r) + O( 1) ． This finishes the proof．
Note that there is an alternative method of

estimating TΓ ( r) in terms of Tf，ω ( r) ． It is based on
the calculation of ( negative) curvature

ddclog 1
log‖sj‖

( )2 2

≥2 cω
‖sj‖

2( log‖sj‖
2) 2

－{ }εω

( 2)
for some positive constant c． This important alternative
method allows Griffiths and his school to make the
great progress in 1970's in extending Chern's result．
This leads the discussion in the next section．

2 The Ｒesults of Carlson and
Griffiths
In 1972，J． Carlson and P． Griffiths［5］ extended

Chern's result to differentially non-degenerate
holomorphic mapping f: Cn → M ( i． e． the Jacobian
Jf ( z)  0) ，where M is an algebraic projective
variety and n≥ dim M( we can just assume that n =
dim M) ．

We introduce some notation． We first recall the
definition of height，proximity and counting functions．
Ｒecall the normalized Euclidean form on Cn is 0 =
ddc z 2． Denote by ω0 = ddclog z 2，and the Poincare-

form σ = ( dclog z 2) ∧ ( ddclog z 2) n－1． Then ∫Srσ =

1，where Sr is the ball of radius r． Let ( L，h) be an
Hermitian line bundle on M． Define

Tf，L ( r) = ∫
r

0

dt
t ∫Bt

f* c1 ( L，h) ∧ ωn－1
0 =

∫
r

0

dt
t2n－1∫Bt

f* c1 ( L，h) ∧ n－1
0 ， ( 3)

mf ( r，D) = ∫Sr log
1

‖f* s‖
σ， ( 4)

where s∈ H0 ( M，L) and D = ( s) ． We call
λD ( x) = － log‖s( x) ‖ ( 5)

the Weil function，where s ∈ H0 ( M，L) and D =
( s) ． We can also define Nf ( D，r) in a similar way．

We consider a positive line bundle L on M and q
divisors Dj of holomorphic sections sj of the bundle
such that
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( A) D1，…，Dq are manifolds intersect in general
position;
( B) qc1 ( L) + c1 ( KM ) ＞ 0 where KM is the

canonical bundle．
Theorem 5［5］( The SMT by Carlson and Griffiths)

Let M be a projective variety of dimension n，and
f: Cn → M be a differentially non-degenerate

holomorphic map． Let D = ∑
q

j = 1
Dj be a divisor on M

satisfying ( A) and ( B) ． Let KM be the canonical line
bundle over M． Then，for any δ ＞ 0，

mf ( r，D) + Tf，KM
( r) + N( Sf，r) ≤

O( log Tf，L ( r) ) + δlog r‖δ ．
The proof is similar to the Ｒiemann surface case

above． We consider

Ψ = Ω

∏
q

j = 1
( ‖sj‖

2 ( log‖sj‖
2 ) 2 )

where Ω is a volume form ( a global positive ( n，n)
form on M) ． Write f* Ψ = ΓΦζ，where Φζ is the
Euclidean volume form in Cn ． Then，similar to the
above，we can get

mf ( r，D) + Tf，KM
( r) + N( Sf，r) ≤

O( log T
∧
( r) ) + δlog r‖δ，

where

T
∧
( r) = ∫

r

0

dt
t2n－1∫Bt

Γ1 /nn
0 ．

Similar to the proof in the Ｒiemann surface

case，we need to bound T
∧
( r) in terms of Tf ( L，r) ．

Instead of ( 2) ，Carlson and Griffiths proved the
following claim:

Claim: ( a) ＲicΨ ＞ 0; ( b) ( ＲicΨ) n ＞ Ψ; ( c)

∫M \D
( ＲicΨ) n ＜ ∞ ．

We now use the claim to finish the proof． We
show that
( f* ＲicΨ) ∧ n－1

0 ≥ cΓ1 /nn
0 ．

In fact，writing

f* ＲicΨ = －槡 1
2π ∑

n

j，k = 1
Ｒj，kdzj ∧ dzk ．

Then，by the claim，
ΓΦz = f* Ψ≤ ( f* ＲicΨ) n = n! detＲΦz，

where Ｒ = ( Ｒjk ) ． Use
det( Ｒ) 1 n ≤ TrＲn，

so

Γ
n( )!

1 n

n
0 ≤

1
n∑

n

j = 1
Ｒjj

n
0 ．

But f* ( ＲicΨ) ∧n－1
0 = n－1∑

n

j =1
Ｒjj

n
0 ． Thus ( f

* ＲicΨ) ∧

n－1
0 ≥ cΓ1 nn

0 ．

Now，applying the above inequality，we get T
∧
( r) ≤

cTf，ＲicΨ ( r) for some positive constant c，where

Tf，ＲicΨ ( r) = ∫
r

0

dt
t2n－1∫Bt

f* ( ＲicΨ) ∧ n－1
0 ．

It remains to estimate Tf，ＲicΨ ( r) ． From the definition，

ＲicΨ = qc1( L) + c1( KM) －∑
q

j =1
ddclog( log‖sj‖

2) 2，

so Tf，ＲicΨ ( r) ≤ qTf，L ( r) + Tf，KM
( r) ．

Using the condition ( B) that qc1( L) + c1( KM) ＞
0，we get Tf，ＲicΨ ( r) ≤O( Tf，L ( r) ) ． This completes the
proof of the Second Main Theorem．

Based on the above theorem，Griffiths made the
following conjecture．

Conjecture 1( Griffiths) Let M be a projective
variety of dimension n． Let f: C → M be a
holomorphic map with Zariski-dense image． Let L be
a positive line bundle and let Dj，1 ≤ j ≤ q，be the
divisors of holomorphic sections sj of L such that the
conditions ( A) and ( B) holds． Let KM be the
canonical line bundle over M． Then
Tf，L ( r) + Tf，KM

( r) ≤ N( n)f ( r，D) + O( log Tf，L ( r) ) +
δlog r‖δ ．

We consider the case that M = Pn ( C) ． To
determine the canonical divisor we consider the
differential form Ω = dx1 ∧ dx2 ∧ … ∧ dxn in the
affine coordinates ( 1，x1，…，xn ) on U0 = { x ∈
Pn x0 ≠0} ． There are no zeros or poles on U0 ． But if
we rewrite Ω with respect to ( x0，…，1，…，xn ) on
Ui = { x∈ Pn xi ≠ 0} ，we find

Ω = 1
xn+1
0

dx0 ∧…∧ dx
∧

i ∧…∧ dxn．

Hence Ω has a pole of order n + 1 along x0 = 0 and
KM = － ( n + 1) H where H is the hyperplane at
infinity． So Tf，KM( r) = － ( n + 1) Tf，OPn( 1) ( r) ． Take D =
H1 + … + Hq，where H1，…，Hq are hyperplanes in
general position，then conjecture is the theorem，
known as Cartan's SMT for holomorphic curves
intersecting hyperplanes． We discuss it in the next
section．
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3 H． Cartan's Ｒesult
In 1933，H． Cartan［6］ extended Nevanlinna's

theory to holomorphic mappings from C into Pn ( C)
intersecting hyperplanes，where Pn ( C) is the
n-dimensional complex projective space． To state
Cartan's result，we rewrite the three Nevanlinna's
functions in the case M = Pn ( C) ． Let OPn ( 1) be the
hyperplane line bundle over Pn ( C) ． The metric is
given by hα ( z) = zα

2‖z‖2 on Uα = { z =［z0 :
…: zn］∈ Pn zα ≠ 0} ，where ‖z‖ = max

0≤i≤n
zi ，so

that c1 ( OPn ( 1) = ddc log‖z‖2 = ωFS，where ωFS is
the Fubini-Study form on Pn ( C) ． Let f = ［f0 :…:
fn］: C→Pn ( C) be a holomorphic map，where f0，…，
fn are entire functions without common zeros． The
Nevanlinna-Cartan height function Tf，OPn( 1) ( r) ( we
also simply denote it by Tf ( r) ) is，from ( 3) ，

Tf ( r) = Tf，OPn( 1) ( r) = ∫
r

0

dt
t ∫ z ＜ t

f* ωFS ．

Any holomorphic section s of OPn ( 1) is given by
s( ［z0 :…: zn］) = a0 z0 + … + anzn for some complex
numbers a0，…，an( i． e． s = { sα}，where sα = ( a0z0 +… +
anzn ) zα on Uα = { ［z0 :…: zn］∈ Pn zα ≠ 0} ．

Obviously ( s) = H = { ［z0 :…: zn］∈ Pn ( C) : a0 z0 +
… + anzn = 0} which is a hyperplane in Pn ( C) ．
Thus，the proximity function mf ( r，H) is given by，
from ( 4) ，

mf ( r，H) = － ∫
2π

0
log‖s( f( reiθ ) ) ‖ dθ

2π
=

log ∫
2π

0
log ‖f( reiθ ) ‖·‖L‖

L( f) ( reiθ )
dθ
2π

+ O( 1) ，

where L is the linear form L( x) = a0x0 + … + anxn，

‖L‖ = max
0≤i≤n

ai and ‖f‖ = max
0≤i≤n

fi ．

Note that the Weil function is λH ( x) =

log ‖x‖·‖L‖
L( x) for x ∈ Pn \H． The counting function

Nf ( r，H) is defined as

Nf ( r，H) = ∫
r

r0

nf ( t，H)
t dt，

where r0 ＞ 0 is fixed，nf ( r，H) = # of points in z ＜
r with L( f) ( z) = 0，counting multiplicities．

Theorem 6［6］( Cartan's SMT) Let f: C →
Pn ( C) be a linearly non-degenerate holomorphic
map． Let H1，…，Hq be hyperplanes in general
position in Pn ( C) ． Then，for any ε ＞ 0，

∑
q

j = 1
mf ( r，Hj ) ≤ ( n + 1 + ε) Tf ( r) ‖．

Note that Cartan actually obtained the stronger
result: the SMT with truncations．

In our applications，we need the general form of
H． Cartan's result where the " general position"
condition for the given hyperplanes is dropped［7］．
The new version is basically equivalent to the
original version，but is much easier to use．

Theorem 7［7］( The General Cartan's Theorem) Let
f: C → Pn ( C) be a linearly non-degenerate
holomorphic map． Let H1，…，Hq ( or linear forms L1，

…，Lq ) be arbitrary hyperplanes in Pn ( C) ． Then，for
every ε ＞ 0，

∫
2π

0
max
K ∑j∈K

λHj
( f( reiθ ) ) dθ2π≤

( n + 1 + ε) Tf ( r) ‖

where the maximum is taken over all K { 1，…，q}
such that the linear forms Lj，j ∈ K，are linearly
independent．

For hyperplanes H1，…，Hq in general position
we have the following product to the sum estimate［7］．

Lemma 1［7］( Product to the sum estimate)
Let H1，…，Hq be hyperplanes in P

n ( C) ，located in
general position． Denote by T the set of all injective
maps μ: { 0，1，…，n} → { 1，…，q} ． Then

∑
q

j =1
mf ( r，Hj ) ≤∫

2π

0
max
μ∈T∑

n

i =0
λHμ( i)
( f( reiθ) ) dθ2π

+ O( 1) ．

Therefore，if H1，…，Hq are in general position，
then the general version easily implies H． Cartan's
original theorem． The proof of the General Cartan's
Theorem ( as well as the original Cartan's theorem)
uses the LDL stated above ( see［7］ for details) ．

In the rest of the paper，we discuss some recent
developments in establishing Second Main Theorem
for holomorphic curves into an arbitrary projective
variety，extending the result of H． Cartan． The
method indeed is motivated by the techniques from
Diophantine approximation in number theory． In
2002，in the paper entitled "A subspace theorem
approach to integral points on curves"［8］，P． Corvaja
and U． Zannier started the program of studying
integral points on algebraic varieties by using
Schmidt's subspace theorem in Diophantine approximation．
Since then，the program has led a great progress in
the study of Diophantine approximation［9-15］． It is
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known that the counterpart of Schmidt's subspace in
Nevanlinna theory is H． Cartan's Second Main
Theorem． In recent years，the method of P． Corvaja
and U． Zannier has been adapted by a number of
authors and a big progress has been made in
extending the Second Main Theorem to holomorphic
mappings from C into arbitrary projective variety X
intersecting general divisors by using H． Cartan's
original theorem［16-21］． We call such method " a
Cartan's Second Main Theorem approach" ． We
discuss this method in the next section．

4 Holomorphic Curves into Projective
Varieties
In this section，we use the " Cartan's Second

Main Theorem approach" to establish the Second
Main Theorem for holomorphic curves into an
arbitrary projective variety intersecting general
divisors．
4． 1 The Basic Theorem

The starting point is the following result which
is basically a reformulation of H． Cartan's theorem
stated above． We call it the " Basic Theorem" ． Its
proof can be found in［21］．

Theorem 8( The Basic Theorem) Let X be a
complex projective variety and let D be an effective
Cartier divisor on X，let V be a nonzero linear
subspace of H0 ( X，O( D) ) ，and let s1，…，sq be
nonzero elements of V． Let f: C→X be a holomorphic
map with Zariski-dense image． Then，for any ε ＞ 0，

∫
2π

0
max

J ∑j∈J
λsj ( f( re

iθ ) ) dθ2π≤
( dim V + ε) Tf，D ( r) ‖

where the set J ranges over all subsets of { 1，…，q}
such that the sections ( sj ) j∈J are linearly independent．
4． 2 The Nevanlinna Constant

The above Basic Theorem motivates the notion
of the Nevanlinna constant introduced by the
author［14，19］． Let X be a normal projective variety and
D be an effective Cartier divisor on X． For any
section s∈H0 ( X，O( D) ) and prime divisor E on X，
we use ordEs，or ordE ( s) ，to denote the coefficient of
E in the divisor ( s) ，where ( s) is the divisor on X
associated to s． We also sometimes call ordEs the
multiplicity of E in ( s) ．

Definition 1 Let X be a complex projective
variety，let D be an effective Cartier divisor on X，and
let L be a line sheaf on X． If X is normal，then we
define

Nev( L，D) = inf
N，V，μ
( dim VNμN ) ．

Here the inf is taken over all triples ( N，VN，μN )

such that N ∈ Z ＞ 0，VN is a linear subspace of
H0 ( X，LN ) with dim VN ＞ 1，and μN ＞ 0 is a positive
real number，that satisfy the following property． For
all P∈ Supp D，there exists a basis B of VN with

∑
s∈B

ordE ( s) ≥ μNordE ( ND)

for all irreducible component E of D passing through
P． If there are no such triples ( N，V，μ) ，then
Nev( L，D) is defined to be + ∞ ． For a general
projective variety X，Nev( L，D) is defined by
pulling back to the normalization of X．

Note that，in［19］，the Nevanlinna constant was
only defined for L = OX ( D) ，which is denoted by
Nev( D) : = Nev( OX ( D) ，D) ． The definition given
above is indeed more general and would be
potentially useful．

Theorem 9［19］( Ｒu) Let X be a complex
projective variety，let D be an effective Cartier
divisor and L be a line sheaf on X with dim H0 ( X，
LN ) ≥ 1 for some N ＞ 0． Then，for every ε ＞ 0，

mf ( r，D) ≤ ( Nev( L，D) + ε) Tf，L ( r) ‖
holds for any holomorphic mapping f: C → X with
Zariski-dense image．

The proof uses the Basic Theorem above
together with the properties of Weil functions ( see
( 5) for the definition of the Weil function) stated
below．

Lemma 2［19，22］ The Weil functions λD for
Cartier divisors D on a complex projective variety X
satisfy the following properties．
( i) Additivity: If λ1 and λ2 are Weil functions

for Cartier divisors D1 and D2 on X，respectively，then
λ1 + λ2 extends uniquely to a Weil function for D1 + D2．
( ii) Functoriality: If λ is a Weil function for a

Cartier divisor D on X，and if : X' → X is a
morphism such that ( X')  SuppD，then x |→
λ( ( x) ) is a Weil function for the Cartier divisor
* D on X' ．
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( iii) Normalization: If X = Pn，and if D = { z0 =
0}  X is the hyperplane at infinity，then the
function

λD( ［z0 :…: zn］) : = log
max{ z0 ，…， zn }

x0
is a Weil function for D．
( iv) Uniqueness: If both λ1 and λ2 are Weil

functions for a Cartier divisor D on X，then λ1 = λ2 +
O( 1) ．
( v) Boundedness from below: If D is an

effective divisor and λ is a Weil function for D，then
λ is bounded from below．
( vi) Principal divisors: If D is a principal

divisor ( f) ，then － log f is a Weil function for D．
Outline of the proof of Theorem 9． Denote by σ0

the set of all prime divisors occurring in D，so we can
write

D = ∑
E∈σ0

ordE ( D) E．

Let

: = { σ σ0 ∩
E∈σ

E≠} ．

For an arbitrary x∈X，we can pick σ∈ ( depends
on x) for which

λD ( x) ≤ λDσ，1
( x) + O( 1) ，

where Dσ，1 : =∑
E∈σ

ordE ( D) E． Now for each σ∈，

by definition，there is a basis Bσ of VN is a linear
subspace of H0 ( X，LN ) such that

∑
s∈Bσ

ordE ( s) ≥ μNordE ( ND) ，

at some ( and hence all) points P∈∩
E∈σ

E． Since  is

finite，{ Bσ σ∈} is a finite collection of bases of
VN ． Thus，we have，using the property of Weil
function ( see ( v) in Lemma 2) that，if D1 ≥ D2，

then λD1 ≥ λD2 + O( 1) ，we get that，

λND ( x) ≤
1
μN

max
σ∈
∑
s∈Bσ

λs ( x) + O( 1) ．

The theorem can thus be derived by taking x =
f( reiθ ) ，by taking integration and then by applying
the Basic Theorem above．

Corollary 1 Let D be an ample divisor on a
complex projective variety X． If Nev( D) ＜ 1，then
every holomorphic map f: C → X \D is not Zariski
dense，i． e．，the image of f must be contained in a
proper subvariety of X．

We can derive the known Second Main Theorem
type results by simply computing the Nevanlinna
constant． We first provide the following example to
see how to compute the Nevanlinna's constant．

Example 1 Let X = Pn and D = H1 + … + Hq

where H1，…，Hq are hyperplanes in Pn in general
position． We take N = 1 and consider V1 : = H0 ( Pn，

O( D) )  H0 ( Pn，OPn ( q) ) ． Then dimV1 = q + n( )n
．

For each P∈ Supp D，since H1，…，Hq are in general

position，P∈ Hi1 ∩…∩ Hil with { i1，…，il}  { 1，

…，q} and l ≤ n． Without loss of generality，we can
just assume Hi1 = { z1 = 0} ，…，Hil = { zl = 0} by
taking proper coordinates for Pn ． Now we take the
basis B = { zi00，…，zinn i0 + … + in = q} for V1 =

H0( Pn，OPn( q) ) ． Then，for each irreducible component
E of D containing P，say E = { zj0 = 0} with 1≤ j0≤
l，we have ordE{ zj = 0} = 0 for j≠ j0，ordE{ zj0 = 0} =
1 and thus ordED = 1． On the other hand，

∑
s∈B

ordEs = ∑
i→
ij0 = 1

n + 1∑
i→
( i0 + … + in ) =

q
n + 1

q + n( )n
= q
n + 1dimV1，where，in above，the sum is

taken for all i→ = ( i0，…，in ) with i0 + … + in = q，
and we used the fact that the number of choices of

i→ = ( i0，…，in ) with i0 +… + in = q is q + n( )n
． Thus

we can take μ1 = q
n + 1dimV1，and hence，

Nev( D) ≤ dimV1μ1 = ( n + 1) q．
The above example，together with Theorem 9，

recovers the result of H． Cartan stated earlier under
the slightly stronger assumption that " f is algebraically
non-degenerate" ．

For D = D1 + … + Dq where D1，…，Dq are
hypersurfaces of same degree in Pn in general
position，similar to above，but using a more sophisticated
"multi-index filtration" argument，we can also show
that Nev( D) ≤ ( n + 1)q． Thus Theorem 9 recovers
the following earlier result．

Theorem 10［17］( Ｒu's SMT for hypersurfaces) Let
f: C→Pn( C) be a holomorphic map with Zariski-dense
image． Let D1，…，Dq be hypersurfaces in Pn ( C) of
degree dj，located in general position． Then，for every
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ε ＞ 0，

∑
q

j = 1
d－1
j mf ( r，Dj ) ≤ ( n + 1 + ε) Tf ( r) ‖．

More generally，let X be a complex projective
variety and let D = D1 +… + Dq where D1，…，Dq are
effective Cartier divisors such that each Dj，1 ≤ j ≤
q，is linearly equivalent to A for some fixed ample
divisor A on X． Then we can show that Nev( D) ≤
( dim X + 1) q． So，again，Theorem 9 recovers the
following result．

Theorem 11［18］( Ｒu) Let X be a smooth
complex projective variety of dimension n． Let D1，

…，Dq be effective Cartier divisors such that each Dj，

1 ≤ j ≤ q，is linearly equivalent to djA for some
positive integers dj，where A is a fixed ample divisor
on X． We also assume that D1，…，Dq are in general
position on X． Let f: C → X be a holomorphic map
with Zariski-dense image． Then，for every ε ＞ 0，

∑
q

j = 1
d－1
j mf ( r，Dj ) ≤ ( n + 1 + ε) Tf，A ( r) ‖ ．

4． 3 The Ｒecent Ｒesult of Ｒu-Vojta
Using the filtration and overall method in［16］，

Ｒu Min and P． Vojta established the following SMT
for holomorphic curves into an arbitrary algebraic
variety intersecting general divisors on X． To state
the result，we first give some definition． Let L be a
line sheaf on X，we use h0 ( L) to denote dim H0 ( X，
L) ，and L( － D) to denote the sheaf L O( － D)
for a given divisor D on X．

Definition 2 Let L be a line sheaf and D be a
nonzero effective Cartier divisor on a projective
variety X． We define

γ( L，D) : = lim sup
N

Nh0 ( LN )

∑
m≥1

h0 ( LN ( － mD) )
，

where N passes over all positive integers such that
h0 ( LN ( － D) ) ≠ 0． If no such N exists，then we
define γ( L，D) = + ∞ ( Note that LN does not
have to be base point free) ．

Theorem 12［21］( Ｒu-Vojta) Let X be a smooth
projective variety and let D1，…，Dq be effective
Cartier divisors in general position on X． Let L be a
line sheaf on X with h0 ( LN ) ≥ 1 for N big enough．
Let f: C → X be a holomorphic map with
Zariski-dense image． Then，for every ε ＞ 0，

∑
q

j = 1
mf ( r，Dj ) ≤ ( max1≤j≤q

γ( L，Dj ) + ε) Tf，L ( r) ‖．

An earlier result of the dimension 2 case is
obtained by S． Hussein and Ｒu Min［23］． To use
Theorem 12，we compute γ( L，Dj ) with L = D: = D1 +
… + Dq where each Dj，1 ≤ j ≤ q，is linearly
equivalent to a fixed ample divisor A on X． We write
h0( D) : = h0( O( D) ) ． By the Ｒiemann-Ｒoch theorem，
with n = dim X，we have

h0 ( ND) = h0 ( qNA) = ( qN)
nAn

n! + o( Nn )

and
h0 ( ND － mDj ) = h0 ( ( qN － m) A) =
( qN － m) nAnn! + o( Nn ) ．

Thus

∑
m≥1

h0 ( ND － mDj ) = An

n!∑
qN－1

l = 0
ln + o( Nn+1 ) =

An ( qN － 1) n+1
( n + 1) ! + o( Nn+1 ) ．

Hence

γ( D，Dj) = lim
N→∞

N( qN) nAnn! + o( Nn+1)
An( qN － 1) n+1( n + 1) ! + o( Nn+1)

=

( n + 1) q．
Thus Theorem 12 again implies Theorem 11

stated earlier．
Sketch of the proof of Theorem 12． Choose ε1 ＞

0，ε2 ＞ 0，and positive integers N and b such that

( 1 + n
b ) max1≤i≤q

N( h0 ( L N ) + ε2 )

∑
m≥1

h0 ( L N ( － mDi ) )
＜

max
1≤i≤q

γ( L，Dj ) + ε1 ． ( 6)

Let

 = { σ { 1，…，q} ∩
j∈σ

Supp Dj ≠} ．

For σ∈，let

Δσ = { a = ( ai ) ∈ N#σ ∑
i∈σ

ai = b} ．

For a∈ Δσ，one defines the ideal I ( x) of OX by

I ( x) = ∑
b
OX －∑

i∈σ
biD( )i ( 7)

where the sum is taken for all b∈N#σ with∑
i∈σ

aibi≥

bx． Let
F ( σ; a) x = H0 ( X，L N I ( x) ) ，

which we regard as a subspace of H0 ( X，L N ) ，and
let

F( σ; a) = 1
h0 ( L N ) ∫

+∞

0
( dim F ( σ; a) x ) dx．
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By Theorem 3． 6 in［21］( see also Proposition
4． 14 in［16］) ，we have

F( σ; a) ≥ min
1≤i≤q

1
h0 ( L N )∑m≥1

h0 ( L N ( － mDi( )) ) ．
For any nonzero s∈ H0 ( X，L N ) ，we also define

μa ( s) = sup{ x∈ Ｒ+ : s∈ F ( σ; a) x} ． ( 8)
Let Bσ; a be a basis of H0 ( X，L N ) adapted to

the above filtration { F ( σ; a) x} x∈Ｒ+ ． By Ｒemark 6． 6

in［21］，F( σ，a) = 1
h0 ( L N ) ∑s∈Bσ; a

μa ( s) ． Hence

∑
s∈Bσ; a

μa ( s) ≥ min
1≤i≤q∑m≥1

h0 ( L N ( － mDi ) ) ． ( 9)

It is important to note that there are only
fininitely many ordered pairs ( σ，a) with σ ∈ 
and a∈ Δσ ．

Let σ∈，a ∈ Δσ，and s ∈ H0 ( X，L N ) with
s≠ 0． Since the divisors Di are all effective，it
suffices to use only the leading terms in ( 7) ． The
union of the sets of leading terms as x ranges over the
interval［0，μa ( s) ］ is finite，and each such b occurs
in the sum ( 7) for a closed set of x． Therefore the
supremum ( 8) is actually a maximum．

Similarly，we have

L N I ( μa ( s) ) = ∑
b∈K
L N －∑

i∈σ
biD( )i ，

where K = Kσ，a，s is the set of minimal elements of

{ b∈N#σ :∑
i∈σ

aibi ≥ bμa ( s) } relative to the product

partial ordering on N#σ ． This set is finite，so we have，
for any prime divisor E on X，

ordE ( s) ≥ min
b∈K∑i∈σ

biordE ( Di ) ． ( 10)

For a basis B of H0 ( X，L N ) ，denote by ( B)
the sum of the divisors ( s) for all s∈B． Let E be a
prime divisor on X，and let v，vσ; a，vi ( i = 1，2，…，q)
be the multiplicities of E in D，( Bσ; a ) and Di，

respectively． We claim that we can find some a such
that

vσ; a ≥
b

b + n( min1≤i≤q∑
∞

m = 1
h0 ( L N ( － mDi ) ) ) v． ( 11)

If v = 0 then there is nothing to prove，so we
assume that v ＞ 0． For i∈ σ，let

ti = viv． ( 12)

Note that vi = 0 for all i σ，so∑
i∈σ

vi = ∑
q

i = 1
vi = v，

hence∑
i∈σ

ti = 1． From the assumption that D1，…，Dq

lie in general position，we have #σ ≤ n． Therefore

b≤∑
i∈σ

? ( b + n) ti」≤ b + n，and we may choose a =

( ai ) ∈ Δσ such that
ti ≥ ai( b + n) for all i∈ σ． ( 13)
For any s∈ Bσ; a，let vs be the multiplicity of E

in the divisor ( s) ． Using ( 10) 、( 12) ～ ( 13) ，and

∑
i∈σ

aibi ≥ bμa ( s) ，we get

vs ≥ min
b∈K∑i∈σ

bivi = min
b∈K∑i∈σ

bi t( )i v≥

( min
b∈K∑i∈σ

aibi( b + n) ) v≥ b( )b + n
μa ( s) v， ( 14)

where the set K = Kσ，a，s is as in ( 10) ． Combining
( 14) and ( 9) then gives

vσ，a
v = 1

v ∑s∈Bσ; a

vs ≥
b

b + n∑s∈Bσ; a

μa ( s) ≥

b
b + n min

1≤i≤q∑m≥1
h0 ( L N ( － mDi ) ) ，

which gives ( 11) ．
From ( 11) ，we get

( Bσ; a ) ≥
b

b + n( min1≤i≤q∑
∞

m = 1
h0 ( L N ( － mDi ) ) ) D．

Hence，from the property of Weil functions ( see
Lemma 2) ，it gives

λBσ;a
+ O(1) ≥ b

b + n( min1≤i≤q∑
∞

m=1
h0(L N( － mDi) ) )λD． (15)

Write

∪
σ; a
Bσ; a = B1 ∪…∪ BT1 = { s1，…，sT2 } ．

For each i = 1，…，T1，let Ji  { 1，…，T2 } be the
subset such that Bi = { sj : j∈ Ji} ． Then，by ( 15) ，

b
b + n( min1≤i≤q∑m≥1

h0 ( L N ( － mDi ) ) ) λD ( x) ≤

max
1≤i≤T1

λBi
( x) + O( 1) = max

1≤i≤T1
∑
j∈Ji

λsj ( x) + O( 1) ．

Hence，by taking x = f( z) and taking the integration，
we get

b
b + n( min1≤i≤q∑m≥1

h0 ( L N ( － mDi ) ) ) mf ( r，D) ≤

∫
2π

0
max

1≤i≤T1
∑
j∈Ji

λsj ( f( re
iθ ) ) dθ2π

+ O( 1) ． ( 16)

On the other hand，by the general Cartan's
Theorem with ε2 in place of ε，we have

∫
2π

0
max

1≤i≤T1
∑
j∈Ji

λsj ( f( re
iθ ) ) dθ2π≤

( h0 ( L N ) +

ε2 ) Tf，L N ( r) + O( 1) ‖． ( 17)
Using Tf，L N ( r) = NTf，L ( r) ，the theorem is proved
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by combining ( 6) ，( 16) and ( 17) ．
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Nevanlinna理论的最新进展

汝 敏
( 休斯顿大学数学系，美国德州 休斯顿 77204)

摘要: Ｒ． Nevanlinna在 Picard 定理和 Borel 定理基础上，发表了他的论文，并建立了一个以其名字命名的
理论．此后，Nevanlinna理论已经成为在复分析、复几何和多复变函数的一个重要研究领域．该文旨在回顾
以往研究中的一些重要进展，并对 Nevanlinna理论研究中最新进展进行了部分综述．
关键词: Nevanlinna理论; 第一基本定理; 第二基本定理
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