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Abstract: The naturally partial order e≤ on an abundant semigroup is defined. Some characterizations of 

e≤ are obtained. In particular, it is proved that for an abundant semigroup S, S is an idempotent-connected locally 
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cally orthodox semigroups. 
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0  Introduction 

For a semigroup S  and 2e e S= ∈ , the sub-
semigroup eSe  of S  is a monoid. We call subsemi-
group eSe  a local monoid of S. S  is called a locally 
P  semigroup if all local monoids have the property P. 
Many classes of famous semigroups have some kinds 
of local properties, for example, completely simple 
semigroups are local groups, completely 0-simple 
semigroups are local 0-groups, etc. Nambooripad de-
fined a naturally partial order ≤on regular semi-
groups. Further, he established the connection between 
≤ and locally inverse semigroups. That is, he proved 
that a regular semigroup S  is a locally inverse semi-
group if and only if with respect to ≤, S  is an or-
dered semigroup[1]. In 1989, Lawson introduced a 
naturally partial order ≤e and verified that a regular 
semigroup is a locally orthodox semigroup if and only 
if ≤e =≤[2]. 

To generalize regular semigroups, Fountain[3] de-
fined abundant semigroups. An abundant semigroup is 
defined as a semigroup in which each L∗ -class and 
each R∗ -class contains at least one idempotent. There 
are many authors having been studying various kinds 
of abundant semigroups, An abundant semigroup is 

called adequate[4] if all idempotents commute, an 
abundant semigroup is called quasi-adequate[5] if its 
set of idempotents forms a band. Inverse semigroups 
are adequate and orthodox semigroups are quasi-
adequate. In 1987, Lawson defined three naturally 
partial orders l≤ , r≤ and ≤  on abundant semi-
groups, which coincide with the Nambooripad order 
for regular semigroups. He pointed out that for an IC 
abundant semigroup whose set of regular elements 
form a subsemigroup, it is a locally adequate semi-
group if and only if with respect to ≤ , it is an ordered 
semigroup[6]. In [7], Guo Xiao-jiang and Luo Yan-feng 
proved that an IC abundant semigroup S  is a locally 
adequate semigroup if and only if with respect to ≤ , 
S  is an ordered semigroup. Guo Xiao-jiang and K.P. 
Shum proved the properties of l≤  on a rpp semi-
group[8]. For locally quasi-adequate semigroups, we 
have obtained some interesting results[9]. So we have a 
natural problem: whether locally quasiadequate semi-
groups have similar properties? In this note we shall 
consider this problem. 

In this paper we shall use the notions and nota-
tions of [3]. Others can be found in Howie[10]. Here we 
list some known results used repeatedly in the sequel 
without mentions[11-15]. Firstly, we recall some basic 
facts about the relations L∗  and R∗ . 

Lemma 1  The following statements are equiva-
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lent for a semigroup S  and ,a b S∈ : 

(i) [ ]aL R b∗ ∗ , 

(ii) For all 1,x y S∈ , [ ]ax ay xa ya= =  if and 

only if [ ]bx by xb yb= = . 

Corollary 1  Let S  be a semigroup and 2 ,e e=  
,a S∈  Then the following conditions are equivalent: 

(i) [ ]aL e aR e∗ ∗ , 

(ii) [ ]ae a ea a= =  and for any 1,x y S∈ , ax =  
[ ]ay xa ya=  implies that [ ]ex ey xe ye= = . 

Evidently, L∗  is a right congruence and R∗  is a 
left congruence. In general, L ⊆ L∗  and R ⊆ R∗ . 

But for regular elements a  and b , [ ]aL b aR b∗ ∗  if 

and only if [ ]aLb aRb . For convenience, we use a∗  

to denote the idempotents L∗ -related to a  while a+  
those R∗ -related to a . It is not difficult to see that in 
an adequate semigroup, each L∗ -class and each 
R∗ -class contains exactly one idempotent. Also, if 
K∗  is one of Green's ∗ -relations L∗ , R∗ , H ∗ , D∗  
and J ∗ , we denote by aK∗  the K∗ -class of S  con-

taining a . 
As in [16], an abundant semigroup S  is idem-

potent-connected, in short, IC, if for each a S∈  and 
for some a+ , a∗ , there exists a bijection θ  : 

a a+ ∗〈 〉 → 〈 〉 such that ( )xa a xθ=  for all x a+∈ 〈 〉 , 
where ( ( ))e e E S〈 〉 ∈  is the subsemigroup of S  gen-
erated by the idempotents of eSe . In this case, θ  is 
in fact an isomorphism. 

Recall that ω  is the natural order on the set of 
idempotents of semigroup T  defined by: for ,e f ∈ 

( )E T , 
e fω  if and only if e ef fe= = . 

In what follows, we denote the set { f ∈ ( ), }E T f eω  
by ( )eω .  

Denoted by ( )R x∗  [resp. ( )L x∗ ] is the smallest 
right [resp. left] ∗ -ideal containing x . We define 

x yR R∗ ∗≤  if ( ) ( )R x R y∗ ∗⊆  while x yL L∗ ∗≤ if ( )L x∗ ⊆  

( )L y∗ . It is not difficult to check that these above re-

lations are partial orders on S R∗  and S L∗ , re-

spectively. Thus [ ]xR L y∗ ∗  if and only if x yR R∗ ∗≤  

and xyR R∗ ∗≤ [ x yL L∗ ∗≤  and xyL L∗ ∗≤ ]. As in [6], 

define on an abundant semigroups S : for ,x y S∈ , 

rx y≤ ⇔ x yR R∗ ∗≤  and x ey=  for some ( )xe E R∗∈ , 

and lx y≤  ⇔  x yL L∗ ∗≤  and x yf=  for some f ∈ 

( )xE L∗ , and l r= ∩≤ ≤ ≤ . It is worth to pointing out 
that the restriction of [ , ]r l≤ ≤ ≤ to E(S) coincides 
with ω . Lawson noticed that rx y≤  [resp. lx y≤ ] 

if for each (some) idempotent yy R+ ∗∈  [resp. 

yy L∗ ∗∈ ], there exists an idempotent xx R+ ∗∈  [ resp. 

xx L∗ ∗∈ ] such that x yω+ +  [resp. x yω∗ ∗ ] and 

x x y+=  [resp. x yx∗= ]. 
Lemma 2  If S is an abundant semigroup, then 
(i) For any idempotent e  in S , eSe  is an 

abundant subsemigroup of S , 
(ii) S  is idempotent-connected if and only if on 

S , l r= =≤ ≤ ≤ , if and only if for any a S∈ , 

(a) For some [for any] a+ , a∗  and for any 

( )e aω +∈ , there exists ( )f aω ∗∈  such that ea af= ,  

(b) For some [for any] a∗ ; a+  and for any 

( )g aω ∗∈ , there exists ( )h aω +∈  such that ag ha= . 
For our aim, we need still the following lemma 

due to Hall[12]. 
Lemma 3  Let S  be a semigroup and ( )e E S∈ . 

If ( )E eSe  is a band, then both ( )E eS  and ( )E Se  
are sub-bands of S . 

1  Locally Quasi-Adequate Semigroup 

Definition 1  Let S  be an abundant semigroup 

and ,a b S∈ . Define ,e a b a ba b R R L L∗ ∗ ∗ ∗⇔≤ ≤ ≤  and 

a ebf=  for some ( ), ( ).a ae E R f E L∗ ∗∈ ∈  
Lemma 4  Let S  be an abundant semigroup. 

Then e≤  is a partial order on S  such that 

(i) ( ) ( )e E S E Sω = ×∩≤ , 

(ii) On S , ,l r e⊆ ⊆≤ ≤ ≤ ≤ . 

Proof  For x S∈ , we have x xR R∗ ∗≤ , x xL L∗ ∗≤ . 

Note that S  is abundant, there exist , ( )e f E S∈  

such that eR xL f∗ ∗  and .x exf=  By definition, ex x≤  

and so e≤  is reflexive.  

Assume ,a b S∈  such that ea b≤  and .eb a≤  

By definition, a bR R∗ ∗≤  and abR R∗ ∗≤ , hence 

a bR R∗ ∗= , that is, aR b∗ , dually, aL b∗ . On the other 

hand, by definition, ea b≤  implies that a ebf=  

for some ( )ae E R∗∈  and ( ).af E L∗∈  By the forgoing 
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proofs, bR aR e∗ ∗ and bL aL f∗ ∗ . This shows that 

( )b ebf a= = . Thus e≤  is antisymmetric. Now let 

, ,a b c S∈  with ea b≤  and eb c≤ . By definition, 

a b cR R R∗ ∗ ∗≤ ≤  , a b cL L L∗ ∗ ∗≤ ≤  and ,a ebf b gch= = , 

where ( )ae E R∗∈ , ( )bg E R∗∈ , ( )af E L∗∈ and h∈  

( )bE L∗ , hence a cR R∗ ∗≤ , a cL L∗ ∗≤  and a = ( ) ( )eg c hf . 

Since ,e a c gR R R R∗ ∗ ∗ ∗= =≤  we have ( )eS R e∗= ⊆  

( )R g∗ = gS , and ( )e gx g gx= = ( )ge x S= ∈ , hence 

( )( ( ))e aeg E R E R∗ ∗∈ = , similarly, ( )ahf E L∗∈ . There-

fore ea c≤ . We have now proved that e≤  is a par-
tial order on S.  

If , ( )e f E S∈  and ee f≤ , then e fR R∗ ∗≤  and 

e fL L∗ ∗≤ . By the first inequality, eS = ( )R e∗ ≤  

( )R f f S∗ = , thereby ( ) ( )e fu f fu fe u S= = = ∈ , simi-
larly, .e ef=  Thus e fω , and whence ( )e E S ×∩≤  

( )E S ω⊆ . Note that ( ) ( ).e E S E Sω ⊆ ×∩≤ There-
fore ( ) ( )e E S E Sω = ×∩≤ .  

It remains to verify (ii). Since l r= ∩≤ ≤ ≤  and 

l≤  is a dual of r≤ , it suffices to show that l e⊆≤ ≤ . 
To the end, let ,u v S∈  and lu v≤ . By definition, 

u vL L∗ ∗≤  and u vf=  for some f ∈ ( )uE L∗ . But 

( )u vf R v∗= ∈ , now u vR R∗ ∗≤ . On the other hand, 

u gu gvf= =  for any ( )ug E R∗∈ . Thus eu v≤  and 
consequently, l e⊆≤ ≤ . We complete the proof.  

Let S  be a semigroup and ≺  a partial order on 
S . We call ≺  preserves idempotents if for any 

2,u v v S= ∈ , u v≺  implies that u  is an idempotent. 
And, ≺  is call to preserve the regularity if for any 
u S∈  and Re ( )v g S∈  (the set of regular elements 
of S ), u v≺  implies that u  is regular. By [10], we 
have that for an abundant semigroup, ≤  preserves 
both idempotents and the regularity condition. It is a 
natural problem whether e≤  preserves idempotents 
(the regularity) or not? We proceed to answer this 
problem.  

In general, we do not know whether e≤  pre-
serves the regularity. But we can prove the following 
weaker result.  

Theorem 1  If S  is a locally quasi-adequate 
abundant semigroup, then e≤  preserves the regularity. 

Proof  Assume S  is a locally quasi-adequate 
semigroup. Let ,u v S∈  and ,eu v≤  then uR∗ ≤  

vR∗ , u vL L∗ ∗≤  and u evf=  for some ( ),ue E R∗∈  

f ∈ ( )uE L∗ . Since S  is an abundant semigroup, there 

exist , ( )g h E S∈  such that gR vL h∗ ∗ . Note that 

e u v gR R R R∗ ∗ ∗ ∗= =≤ , we have ( ) ( )eS R e R u∗ ∗= = ⊆  

( ) ( )R v R g gS∗ ∗= = , so e gS∈ , thereby e ge= , thus 
( ),eg E S eg gω∈  and egRe. Similarly, ( ),hf E S∈  

hf hω  and hfLf. Now assume v  is a regular element 
of S  and choose that v′  is an inverse of v  such 
that h v v′=  and g vv′= . It is not difficult to see that 

( )v hf v E S′⋅ ⋅ ∈  and v hf v gω′⋅ ⋅ . By Lemma 3, these 
show that eg v hf v′⋅ ⋅ ⋅  is an idempotent of gSg  
since , ( )vhfv eg E gSg′ ∈ . Clearly, egvhfv gω′ , hence 
u evf egvhfv v′= = ⋅  r v≤ , thereby u  is regular since 

r≤  preserves the regularity. Therefore e≤  pre-
serves the regularity.  

It is worth to mentioning that the converse of 
Theorem 1 is not true. This can follows from the fact: 
on a regular semigroup, e≤  always preserves the 
regularity.  

Theorem 2  If S  is an abundant semigroup, 
then S  is a locally quasi-adequate semigroup if and 
only if e≤  preserves idempotents. 

Proof  Assume that S  is a locally quasi-ade-
quate semigroup. With notations in the proof of Theo-
rem 1, we have ru v≤ . If v  is an idempotent, then 
u  is an idempotent since r≤  preserves idempotents, 
whence e≤  preserves idempotents. 

Conversely, suppose that e≤  preserves idem-
potents. Let ( )e E S∈  and assume , ( )x y E eSe∈ . 
Obviously, x exe eω=  and y eω . These show that 

x eR R∗ ∗≤  and x eL L∗ ∗≤ . Note that xy exe e eye= ⋅ ⋅ . 
Therefore exy e≤ , and whence xy  is an idempo-
tent of eSe  since e≤  preserves idempotents. Con-
sequently, ( )E eSe  is a band. Again by Lemma 2, 
eSe is a quasi-adequate semigroup. We complete the 
proof.  

Theorem 3  Let S  be an abundant semigroup. 
Then S  is an idempotent-connected semigroup 
which is locally quasi-adequate if and only if e=≤ ≤ . 

Proof  Assume S  is an idempotent-connected 
semigroup which is locally quasi-adequate. Let ,a  
b S∈  and ea b≤ . By the proof of Theorem 1, for all 

( )bg E R∗∈  and ( )bh E L∗∈ , there are ( ),ae E R∗∈  

( )af E L∗∈  such that ,e g f hω ω  and a ebf= . Since 



342 江西师范大学学报(自然科学版) 2012年 
 

 

S  is idempotent-connected and by Lemma 2, there is 
( )k E gSg∈  such that bf kb= . Note that ( )E gSg  is 

a band, we observe that ( )ek E S∈ . Similarly, there 

exists ( )l E S∈  such that a bl= . We have now 

proved that a ek b bl= ⋅ = . In other words, a b≤ . 
Therefore e⊆≤ ≤  and the reverse inclusion follows 
from Lemma 4. 

Conversely, if e=≤ ≤  on S , then e≤  pre-
serves the regularity since ≤  preserves the regularity, 
hence by Theorem 2, S  is a locally quasi-adequate 
semigroup. On the other hand, by Lemma 4, 

l r= =≤ ≤ ≤  and whence S  is idempotent-connected. 
This completes the proof.  

 It is well known that any regular semigroup is 
an idempotent-connected abundant semigroup. By 
Theorem 3, the following corollary is immediate, 
which is just the main result of [6]. 

Corollary 2  Let S  be a regular semigroup. 
Then S  is a locally orthodox semi-group if and only 
if e=≤ ≤ . 
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摘要: 定义了富足半群上一个自然偏序 e≤ , 给出研究了自然偏序 e≤ 的性质, 证明了: 富足半群 S是幂等元
连通的局部拟适当半群当且仅当 e=≤ ≤ , 丰富和推广了 Lawson的局部半群的相关结果. 
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