[1]孙光厚,刘坚强,潮兴兵,等.具有Dzyaloshinskii-Moriya作用和晶体场作用的Heisenberg模型的临界性质[J].江西师范大学学报(自然科学版),2012,(04):376-378.
 SUN Guang-hou,LIU Jian-qiang,CHAO Xing-bing,et al.The Critical Properties of the Heisenberg Model with the Dzyaloshinskii-Moriya and Crystal Field Interactions[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):376-378.
点击复制

具有Dzyaloshinskii-Moriya作用和晶体场作用的Heisenberg模型的临界性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年04期
页码:
376-378
栏目:
出版日期:
2012-08-01

文章信息/Info

Title:
The Critical Properties of the Heisenberg Model with the Dzyaloshinskii-Moriya and Crystal Field Interactions
作者:
孙光厚;刘坚强;潮兴兵;谢卫军
九江学院理学院, 江西 九江 332005
Author(s):
SUN Guang-hou LIU Jian-qiang CHAO Xing-bing XIE Wei-jun
关键词:
Heisenberg模型Dzyaloshinskii-Moriya作用晶体场作用三临界点平均场近似
Keywords:
Heisenberg model Dzyaloshinskii-Moriya interaction crystal interaction tricritical point mean-field method
分类号:
O414.13
文献标志码:
A
摘要:
利用平均场近似的方法,研究了具有Dzyaloshinskii-Moriya(DM)作用和纵向晶体场作用的自旋S=1的Heisenberg 模型的临界性质,得到了该系统的相图.研究结果表明:所研究系统存在三临界点,并且约化晶体场作用参量和约化 DM作用参量分别连续变化时,系统的三临界温度不随相应参量单调变化,约化三临界温度分别存在一个最小值.系统的这种临界性质可以解释为系统的交换耦合作用、晶体场作用DM作用之间相互竞争的结果.
Abstract:
Using the mean-field method, the Heisenberg model with the Dzyaloshinskii-Moriya (DM) and crystal field interactions has been studied. The phase diagrams of this system are obtained, and it is found that the system exhibits the tricritical point. When the reduced DM interaction parameter and the reduced crystal field interaction parameter change separately and continuously, the tricritical temperature doesn’t monotonously change, and has a minimum. The critical properties of the system may be interpreted as a result of a competition among the exchange interaction, the crystal field interaction and the DM interaction.

参考文献/References:

[1] Leptit M B, Manousakis E. Real-space renormalization-group studies of low-dimensional quantum antiferromagnets [J]. Physical Review B, 1993, 48(2): 1028-1035.
[2] Fishman R S, Liu S H. Nonlinear dynamics of a Heisenberg ferromagnet [J]. Physical Review B, 1992, 45(10): 5414-5427.
[3] Liu Ruijie, Chen Tianlun. Study of the quantum spin Heisenberg model with variational-cumulant expansion to the third order [J]. Physical Letter A, 1994, 194(1/2): 137-140.
[4] Suzuk N. Phase transition of the S=1/2 quantum anisotropic Heisenberg antiferromagnet on the triangular lattice [J]. Physical Review B, 1995, 51(10): 6402-6410.
[5] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics [J]. Journal of Physical Chemistry Solids, 1958, 4(4): 241-245.
[6] Moriya T. New mechanism of anisotropic superexchange interaction [J]. Physical Review Letter, 1960, 4(5): 228-230.
[7] Ricardo de Sousa J, de Albuquerque D F, Fittipaldi I P. Tricritical behavior of a heisenberg model with Dzyaloshinskii-Moriya interaction [J]. Physical Letter A, 1994, 191(3/4): 275-278.
[8] Sun Guanghou, Kong Xiangmu. Phase diagram and tricritical behavior of the spin-1 Heisenbergmodel with Dzyaloshinskii– Moriya interactions [J]. Physica A, 2006, 370(2): 585-590.

更新日期/Last Update: 1900-01-01