[1]周莉,王珏,周勇.遗传算法在试卷生成中的应用[J].江西师范大学学报(自然科学版),2013,(06):579-583.
 ZHOU Li,WANG Jue,ZHOU Yong.Application of Test Paper Generation Based on Genetic Algorithm[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):579-583.
点击复制

遗传算法在试卷生成中的应用()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年06期
页码:
579-583
栏目:
出版日期:
2013-12-31

文章信息/Info

Title:
Application of Test Paper Generation Based on Genetic Algorithm
作者:
周莉;王珏;周勇
华东交通大学软件学院,江西南昌,330013;江西师范大学计算机信息工程学院,江西南昌,330022
Author(s):
ZHOU Li;WANG Jue;ZHOU Yong
关键词:
遗传算法组卷平衡算子权重算子
Keywords:
Genetic Algorithmtest paper generationequilibrium operatorweight operator
分类号:
TP315.69
文献标志码:
A
摘要:
试卷自动生成是一个多目标的问题,遗传算法可以搜索全局最优解,将遗传算法用于自动组卷算法中,并引入平衡算子和权重算子计算算法的概念,有效地解决难以寻求最优解的问题.实验结果表明:该算法有效地避免了通过一些常规的方法所造成的弊端,并且提高了搜索全局最优解的能力,加快了收敛速度.该方法不仅在教育领域有一定的实用性,也具有潜在的应用价值.
Abstract:
Considering the problem on generating test papers is multi-objective and the genetic algorithm(GA)can search the globally optimal solution,a GA-based algorithm for test paper generation automatically is presented,and effectively solves the problem that it is hard to find the optimal solution,by introducing the concepts of the equilibrium operator and the weight operator.The experiments show that this algorithm effectively avoids the disadvantages caused by some conventional methods,and moreover,it improves the ability of searching a globally optimal solution and increases the convergent speed.This method not only is effective for the kind of practical problems in education field,but also has potential applications in several problems in engineering.

参考文献/References:

[1] Itchell M.An introduction to genetic algorithms [M].Cambridge:MIT Press,1996:15-17.
[2] 王月敏.基于遗传算法的智能组卷系统的研究 [J].云南民族大学学报:自然科学版,2009(4):173-176.
[3] Sahoo L,Bhunia A K.Genetic algorithm based multi-objective reliability optimization in interval environment [J].Computers & Industrial Engineering,2012,62(1):133-139.
[4] Takahashi T,Nakai H.An automatic modeling system of the reaction mechanisms for chemical vapor deposition processes using real-coded genetic algorithms [J].Journal of Nanoscience and Nanotechnology,2011,11(9):219-224.
[5] Linhart J M.Algorithm 885:computing the logarithm of the nrmal distribution [J].ACM Transactions on Mathematical Software,2009,25(3):102-109.
[6] Machmudah M,Parman S.UAV bezier curve maneuver planning using genetic algorithm [C].New York:ACM,2010.
[7] Dyer J D,Hartfield R J.Aerospace design optimization using a steady state real-coded genetic algorithm [J].Applied Mathematics and Computation,2012,218(69):43-45.
[8] 王小平,曹立平.遗传算法理论应用与软件实现 [M].西安:西安交通大学出版社,2002.
[9] 何春华,胡迎春.遗传算法在自动组卷中的应用 [J].广西工学院学报,2006,17(4):60-63.
[10] Acharjee P.Identification of maximum loadability limit and weak buses using security constraint genetic algorithm [J].International Journal of Electrical Power and Energy Systems,2012,36(1):73-75.

相似文献/References:

[1]庄景明,彭昕昀.基于改进遗传算法的新鲜农产品配送路线优化研究[J].江西师范大学学报(自然科学版),2012,(04):399.
 ZHUANG Jing-ming,PENG Xin-yun.The Research on the Optimization of Fresh Products? Delivery Routes Based on the Improved Genetic Algorithm[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(06):399.
[2]徐芳萍,王喜燕,杨 辉,等.基于遗传算法优化BP神经网络的稀土萃取过程建模[J].江西师范大学学报(自然科学版),2017,(03):314.
 XU Fangping,WANG Xiyan,YANG Hui,et al.The Modeling of the Rare-Earth Extractive and Separate Process Based on Genetic Algorithm and BP Neural Network[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(06):314.

备注/Memo

备注/Memo:
国家自然科学基金(61165004);华东交大校立科研基金(12RJ03,13RJ02)
更新日期/Last Update: 1900-01-01