[1]苗晨,刘国志.1个单纯形搜索法和免疫进化的微粒群算法的混合算法[J].江西师范大学学报(自然科学版),2013,(06):647-651.
 MIAO Chen,LIU Guo-zhi.A Hybrid Simplex Search and Particle Swarm Optimization Algorithm with Immune Evolutionary[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):647-651.
点击复制

1个单纯形搜索法和免疫进化的微粒群算法的混合算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年06期
页码:
647-651
栏目:
出版日期:
2013-12-31

文章信息/Info

Title:
A Hybrid Simplex Search and Particle Swarm Optimization Algorithm with Immune Evolutionary
作者:
苗晨;刘国志
营口理工学院基础教学部,辽宁营口,115014
Author(s):
MIAO Chen;LIU Guo-zhi
关键词:
单纯形搜索法微粒群最优化无约束最优化免疫进化
Keywords:
simplex search methodparticle swarm optimizationunstrained optimizationimmune evolutionary
分类号:
TP18
文献标志码:
A
摘要:
基于单纯形搜索法和免疫进化微粒群算法,提出1个求解无约束最优化问题的新的混合算法—单纯形搜索法和免疫进化微粒群算法的混合算法.由于它不需要梯度信息,所以具有易实施、收敛速度快和计算准确的优点.为了证明混合算法能够改进免疫进化微粒群算法的性能,首先利用6个测试函数进行仿真计算比较,计算结果表明,新的混合算法在求解质量和收敛速率上都优于其它进化算法(IEPSO,PSOPC,GSPSO,LSPSO and CPSO);其次,将新混合算法和最新的3种混合算法进行鲁棒性分析比较,结果表明,新混合算法在解的搜索质量、效率和关于初始点的鲁棒性方面都优于其它算法.
Abstract:
The hybrid NM-IEPSO algorithm is proposed based on the Nelder-mead(NM)simplex search method and particle swarm optimization algorithm with immune evolutionary(IEPSO)for unstrained optimization.NM-IEPSO is very easy to implement in practice since it does not require gradient computation,and intends to produce faster and more accurate convergence.The main propose is to demonstrate how the IEPSO can be improved by incorporating a hybridization strategy.In a suit of 6 test function problems taken from the literature,computational results,show that the hybrid NM-IEPSO approach outperforms five relevant search techniques(i.e.,IEPSO,PSOPC,GSPSO,LSPSO and CPSO)in terms of solution quality and convergence rate.In a later part of the comparative experiment,the NM-IEPSO algorithm is compared to three hybrid algorithms procedures appearing in the literature.The comparison report still largely favors the NM-IEPSO algorithm in the performance of accuracy,robustness and function evaluation.As evidenced by the overall assessment based on two kinds of computational experience,the new algorithm has demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for unstrained optimization.

参考文献/References:

[1] He Shan,Wu Q Henry,Wen Jinyu,et al.A particle swarm optimizer with passive congregation [J].BioSytems,2004,78(1/2/3):135-147.
[2] Fan Shu-Kai S,Erwie Zahara.A hybrid simplex search and particle swarm optimization for unstrained optimization [J].European J of Operational Research,2007,182(2):527-548.
[3] 刘国志,刘倩囡.箱型约束优化问题的免疫进化的算法 [J].长春理工大学学报,2012,35(3):89-92.
[4] 刘国志.一个求解约束优化问题的混合算法 [J].江西师范大学学报:自然科学版,2011,35(1):50-53.
[5] 刘国志,苗晨.一个与POWELL搜索相结合的混合免疫进化算法 [J].江西师范大学学报:自然科学版,2010,34(1):53-56.
[6] 李俊武,俞志富.改进粒子群算法在DOA估计中的应用 [J].计算机工徎与应用,2013,49(9):203-206.
[7] 陈义雄,梁昔明,黄亚飞.一种改进的混合量子粒子群优化算法 [J].计算机工程,2013,39(8):253-256.
[8] 仲昭明,李向阳.混合择优的多目标免疫进化粒子群算法 [J].计算机工程与应用,2013,49(13):43-47.
[9] 刘国志.求解非线性极大极小问题的一种新的混合算法 [J].长春理工大学学报,2011,34(4):164-166.
[10] 刘国志,刘倩囡.关于约束工程设计问题的一个新的混合算法 [J].长春理工大学学报,2012,35(1):119-121.
[11] 刘国志,苗晨.Powell搜索法和惯性权重非线性调整局部收缩微粒群算法相结合的混合算法 [J].吉林大学学报:自然科学版,2008,46(6):1149-1154.

备注/Memo

备注/Memo:
辽宁省自然科?Щ?001084)
更新日期/Last Update: 1900-01-01