参考文献/References:
[1] Armand M.Building better batteries [J].Nature,2008,451:652-657.
[2] Tarascon J M.Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414:359-367.
[3] 简绍菊,胡晓婺,邹燕,等.高强度聚酰亚胺/Ag复合纳米纤维的制备与表征 [J].江西师范大学学报:自然科学版,2012,36(1):1-4.
[4] 吴宇平,等.锂离子电池:应用与实践 [M].北京:化学工业出版社,2011.
[5] Obrovac M N.Reversible cycling of crystalline silicon powder [J].Journal of the Electrochemical Society,2007,154(2):A103-A108.
[6] Wang Jian.The development of silicon nanocomposite materials for Li-ion secondary batteries [J].The Open Materials Science Journal,2011,5(Suppl 1:M5)228-235.
[7] Thackeray M M.Electrical energy storage for transportation-approaching the limits of,and going beyond,lithium-ion batteries [J].Energy & Environmental Science,2012,5:7854-7863.
[8] Uday Kasavajjula.Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J].Journal of Power Sources,2007,163(2):1003-1039.
[9] Su Liwei.Li ion battery materials with core-shell nanostructures [J].Nanoscale,2011,3:3967-3983.
[10] Maranchi J P.High capacity,reversible silicon thin-film anodes for lithium-ion batteries [J].Electrochemical and Solid-State Letters,2003,6(9):A198-A201.
[11] Wu Hui.Designing nanostructured Si anodes for high energy lithium ion batteries [J].Nano Today,2012,7(5):414-429.
[12] Liu Nian.A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes [J].Nature Nanotechnology,2014(9):187-192.
[13] Liu Nian.Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes [J].Scientific Reports,2013(3):1919-1925.
[14] Wu Hui.Engineering empty space between Si nanoparticles for lithiumion battery anodes [J].Nano Letters,2012,12(2):904-909.
[15] Wu Hui.Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control [J].Nature Nanotechnology,2012,7:310-315.
[16] Wang Chao.Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries [J].Nature Chemistry,2013,5:1042-1048.
[17] Fathy M Hassan.Engineered Si electrode nanoarchitecture:a scalable postfabrication treatment for the production of next-generation Li-ion batteries [J].Nano Letters,2014,14(1):277-283.
[18] Zhou Xiaosi.Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries [J].Small,2013,9(16):2684-2688.
[19] Guo Qiaohui.A composite made from palladium nanoparticles and carbon nanofibers for superior electrocatalytic oxidation of formic acid [J].Microchimica Acta,2014,181(7/8):797-803.
[20] 赵吉诗.锂离子电池硅基负极材料研究进展 [J].稀有金属材料与工程,2007,36(8):1490-1494.
[21] Yi Ran.Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries [J].Advanced Energy Materials,2013,3(3):295-300.
[22] 徐宇虹.锂离子电池硅负极的失效行为与性能改进 [D].哈尔滨:哈尔滨工业大学,2010.
[23] Wang Jiaqing.Highly reversible lithium storage in Si(core)-hollow carbon nanofibers(sheath)nanocomposites [J].Nanoscale,2013,5:2647-2650.
相似文献/References:
[1]胡秀霞,欧阳楚英.离子迁移动力学的计算材料学研究方法概述及其在锂离子电池材料中的应用[J].江西师范大学学报(自然科学版),2013,(06):551.
HU Xiu-xia,OUYANG Chu-ying.Computational Materials Sciences Methods for Studying Ionic Transport Dynamics and Their Applications in Lithium Ion Battery Materials[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(03):551.
[2]熊云奎,廖维林,涂媛鸿.石墨状聚萘的合成及其作为锂离子电池正极材料[J].江西师范大学学报(自然科学版),2015,(05):474.
XIONG Yunkui,LIAO Weilin,TU Yuanhong.The Synthesis of Graphite-Like Polynaphthalene and Its Electrochemical Properties as Cathode Material for Lithium-Ion Battery[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(03):474.