参考文献/References:
[1] Shackelford J F.Introduction to Materials Science for Engineers [M〗.6th ed.New Jersey:Prentice Hall,2004.
[2] Eigler D M,Schweizer E K.Positioning single atoms with a scanning tunnelling microscope [J].Nature,1990,344(6266):524-526.
[3] Argon A S,Yip S.Molecular dynamics simulation of crack tip processes in alpha-iron and copper [J].Journal of Applied Physics,1983,54(9):4864-4878.
[4] Mullins M.Computer simulation of fracture using long range pair potentials [J].Acta Metallurgica,1984,32(3):381-388.
[5] Dienes G J,Paskin A.Molecular dynamic simulations of crack propagation [J].Journal of Physics and Chemistry of Solids,1987,48(11):1015-1033.
[6] Zhang Yongwei,Wang Ziqiang,Tang Qiheng.Simulation of nucleation and emission of dislocations by molecular-dynamics method [J].Journal of Applied Physics,1995,77(6):2393-2399.
[7] Zhou S J,Lomdahl P S,Voter A F,et al.Three-dimensional fracture via large-scale molecular dynamics [J].Engineering Fracture Mechanics,1998,61(1):173-187.
[8] Komanduri R,Chandrasekaran N,Raff L M.Molecular dynamics(MD)simulation of uniaxial tension of some single-crystal cubic metals at nanolevel [J].International Journal of Mechanical Sciences,2001,43(10):2237-2260.
[9] Kucherov L,Tadmor E B.Twin nucleation mechanisms at a crack tip in an hcp material:Molecular simulation [J].Acta materialia,2007,55(6):2065-2074.
[10] Cheng Shaohuan,Sun C T.Size-dependent fracture toughness of nanoscale structures:a crack-tip stress approach in molecular dynamics [J].Journal of Nanomechanics and Micromechanics,2014,4(4):1-3.
[11] Wu Wenping,Yao Zongzhuan.Sample size dependence of crack-tip microstructure and stress evolutions in single crystal nickel [J].CMES:Computer Modeling in Engineering & Sciences,2013,93(4):235-252.
[12] Chang Winjin,Fang Tehua.Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation [J].Journal of Physics and Chemistry of Solids,2003,64(8):1279-1283.
[13] Nishimura K,Miyazaki N.Molecular dynamics simulation of crack growth under cyclic loading [J].Computational Materials Science,2004,31(3):269-278.
[14] Potirniche G P,Horstemeyer M F,Jelinek B,et al.Fatigue damage in nickel and copper single crystals at nanoscale [J].International Journal of Fatigue,2005,27(10):1179-1185.
[15] Tang Tian,Kim S,Horstemeyer M F.Fatigue crack growth in magnesium single crystals under cyclic loading:Molecular dynamics simulation [J].Computational Materials Science,2010,48(2):426-439.
[16] Tang Tian,Kim S,Jordon J B,et al.Atomistic simulations of fatigue crack growth and the associated fatigue crack tip stress evolution in magnesium single crystals [J].Computational Materials Science,2011,50(10):2977-2986.
[17] Anna Machová,Glenn E Beltz.Ductile-brittle behavior of(0 0 1)
[1 1 0] nano-cracks in bcc iron [J].Materials Science and Engineering A,2004(387/389):414-418.
[18] 吴映飞,王崇愚,郭雅芳.体心立方铁中裂纹扩展的结构演化研究 [J].自然科学进展,2005,15(2):206-211.
[19] 曹莉霞,王崇愚.α-Fe 裂纹的分子动力学研究 [J].物理学报,2007,56(1):413-422.
[20] Finnis M W,Sinclair J E.A simple N-body potential for transition metals [J].Philosophical Magazine A,1984,50(1):45-55.
[21] Uhnáková A,Machov Uhnáková A,Hora P.3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron [J].International Journal of Fatigue,2011,33(9):1182-1188.
[22] Uhnáková A,Pokluda J,Machová A,et al.3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II [J].Computational Materials Science,2012,61(8):12-19.
[23] Uhnáková A,Pokluda J,Machová A,et al.3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III [J].International Journal of Fatigue,2011,33(12):1564-1573.
[24] Plimpton S J.Fast parallel algorithms for short-range molecular dynamics [J].Journal of Computational Physics,1995,117(1):1-19.
[25] 冯端.金属物理学 [M].北京:科学出版社,1999.
[26] Hu S Y,Ludwig M,Kizler P,et al.Atomistic simulations of deformation and fracture of α-Fe [J].Modelling & Simulation in Materials Science & Engineering,1998,6(5):567-586.
[27] Mendelev M,Han S,Srolovitz D,et al.Development of new interatomic potentials appropriate for crystalline and liquid iron [J].Philosophical Magazine,2003,83(35):3977-3994.
[28] Leese J,Lord A E.Elastic stiffness coefficients of single-crystal iron from room temperature to 500℃ [J].Journal of Applied Physics,1968,39(8):3986-3988.
[29] Machová A.Molecular dynamic simulation of microcrack initiation by impact loading [J].Materials Science and Engineering:A,1992,149(2):153-165.
[30] Potirnichea G P,Horstemeyera M F,Jelineka B,et al.Fatigue damage in nickel and copper single crystals at nanoscale [J].International Journal of Fatigue,2005,27(10/11/12):1179-1185.
[31] Kelchner C L,Plimpton S J,Hamilton J C.Dislocation nucleation and defect structure during surface indentation [J].Physical Review B,1998,58(17):11085-11088.
[32] Honeycutt J D,Andersen H C.Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J].Journal of Physical Chemistry,1987,91(19):4950-4963.
[33] Yuan Yuquan,Zeng Xiangguo,Chen Huayan,et al.Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles [J].Journal of the Korean Physical Society,2013,62(11):1645-1651.
[34] Bancroft D,Peterson E L,Minshall S.Polymorphism of iron at high pressure [J].Journal of Applied Physics,2004,27(3):291-298.
[35] Wang F M,Ingalls R.Iron bcc-hcp transition:local structure from X-ray-absorption fine structure [J].Physical Review B,1997,57(10):5647-5654.
[36] Cheung K S,Harrison R J,Yip S.Stress induced martensitic transition in a molecular dynamics model of α-iron [J].Journal of applied physics,1992,71(8):4009-4014.
[37] Nishimura K,Miyazaki N.Molecular dynamics simulation of crack propagation in polycrystalline material [J].CMES- Computer Modeling in Engineering and Sciences,2001,2(2):143-154.
[38] Nishimura K,Miyazaki N.Molecular dynamics simulation of crack growth under cyclic loading [J].Computational materials science,2004,31(3):269-278.