[1]傅方佳,胡 娜,张 飞,等.咪唑类离子液体在金纳米粒子表面结构性质的模拟研究[J].江西师范大学学报(自然科学版),2016,40(04):404-409.
 FU Fangjia,HU Na,ZHANG Fei,et al.Simulation Study of Structural Properties of Imidazolium-Based Ionic Liquid on Au Nanoparticle Surfaces[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(04):404-409.
点击复制

咪唑类离子液体在金纳米粒子表面结构性质的模拟研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年04期
页码:
404-409
栏目:
出版日期:
2016-09-01

文章信息/Info

Title:
Simulation Study of Structural Properties of Imidazolium-Based Ionic Liquid on Au Nanoparticle Surfaces
作者:
傅方佳胡 娜张 飞杨 振陈祥树
江西师范大学化学化工学院,江西省无机膜材料工程技术研究中心,江西 南昌 330022
Author(s):
FU FangjiaHU NaZHANG FeiYANG ZhenCHEN Xiangshu
College of Chemistry and Chemical Engineering,Jiangxi Inorganic Membrane Materials Engineering Research Center,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
金纳米粒子 离子液体 界面结构 分子动力学
Keywords:
Au nanoparticle ionic liquid interfacial structure molecular dynamics
分类号:
O 641
文献标志码:
A
摘要:
采用分子动力学(Molecular Dynamics,MD)模拟方法,研究了1-丁基-3-甲基咪唑四氟硼酸盐([BMIM][BF4])离子液体在不同尺寸的金纳米粒子表面的结构性质.计算结果在分子水平上揭示了咪唑类离子液体在Au纳米粒子表面的结构特征与纳米粒子尺寸密切相关.通过分析,发现阳离子中的烷基侧链在小尺寸Au13纳米粒子表面聚集的最多,然而阳离子中的咪唑环则在大尺寸Au309纳米粒子表面聚集的最多.同时,取向分布也表明阳离子中的咪唑环倾向于分布在大尺寸Au309纳米粒子周围而不是小尺寸Au13纳米粒子.进一步的能量分析表明,阳离子中的烷基侧链与小尺寸的Au13纳米粒子相互作用能要强于阳离子中的咪唑环,而Au309纳米粒子则与咪唑环的相互作用能最强.此外,无论是对于小尺寸的Au13纳米粒子还是大尺寸的Au309纳米粒子,阴离子的相互作用能都是最小的.这预示着阴离子对于Au纳米粒子表面结构性质是典型的间接作用.
Abstract:
The molecular dynamics simulations have been employed to study the structural properties of 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM][BF4])ionic liquids surrounding Au nanoparticles with different sizes.The simulation results reveal for the first time that the structural properties of imidazolium-based ionic liquids in Au nanoparticles depend on the size of nanoparticles at a molecular level.The structural properties are dominated by the alkyl chains of cations in the case of Au13 nanoparticle were found,while the imidazolium rings have the most contributions in the case of larger Au309nanoparticle.Meanwhile,the orientational distributions also show that cations prefer to locate on the Au309nanoparticles surface.Furthermore,the relevant interaction energies indicate that the interaction between the alkyl chain and the Au13nanoparticle much stronger than that from imidazolium rings,which is contrary to the behavior in the case of Au309 nanoparticle.In addition,all of the interactions between the anion and the Au nanopartciles is always the smallest regardless of the particle size,indicating that the anions have an indirect effect on the relevant structural properties.

参考文献/References:

[1] Corma A,Serna P.Chemoselective hydrogenation of nitro compounds with supported gold catalysts [J].Science,2006,313(5785):332-334.
[2] Saha K,Agasti S S,Kim C,et al.Gold nanoparticles in chemical and biological sensing [J].Chem Rev,2012,112(5):2739-2779.
[3] Hakkinen H.Atomic and electronic structure of gold clusters:understanding flakes,cages and superatoms from simple concepts [J].Chem Soc Rev,2008,37(9):1847-1859.
[4] Linic S,Aslam U,Boerigter C,et al.Photochemical transformations on plasmonic metal nanoparticles [J].Nat Mater,2015,14(6):567-576.
[5] Seddon K R.Iionic liquids:a taste of the future [J].Nat Mater,2003,2(6):363-365.
[6] Yang Jin,Zhang Luyuan,Wang Lijuan,et al.Femtosecond conical intersection dynamics of tryptophan in proteins and validation of slow down of hydration layer dynamics [J].J Am Chem Soc,2012,134(40):16460-16463.
[7] Bagchi B.From anomalies in neat liquid to structure,dynamics and function in the biological world [J].Chem Phys Lett,2012,529:1-9.
[8] Kvitek L,Panacek A,Soukupova J,et al.Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles(NPs)[J].J Phys Chem C,2008,112(15):5825-5834.
[9] An D,Su J,Werber J K,et al.A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition [J].J Am Chem Soc,2015,137(26):8412-8418.
[10] Sharma J,Chhabra R,Cheng A C,et al.Control of self-assembly of DNA tubules through integration of gold nanoparticles [J].Science,2009,323(5910):112-116.
[11] Love J C,Estroff L A,Kriebel J K,et al.Self-assembled monolayers of thiolateson metals as a form of nanotechnology [J].Chem Rev,2005,105(4):1103-1169.
[12] Barrena E,Palacios-Lidon E,Munuera C,et al.The role of intermolecular and molecule-substrate interactions in the stability of alkanethiol nonsaturated phases on Au(111)[J].J Am Chem Soc,2004,126(1):385-395.
[13] Dupont J,Scholten J D.On the structural and surface properties of transition-metal nanoparticles in ionic liquids [J].Chem Soc Rev,2010,39(5):1780-1804.
[14] Redel E,Walter M,Thomann R,et al.Stop-and-Go,stepwise and “ligand-free” nucleation,nanocrystal growth and formation of Au-NPs in ionic liquids(ILs)[J].Chem Commun,2010,46(7):1159-1161.
[15] Zhang Hao,Cui Hua.Synthesis and characterization of functionalized ionic liquid-stabilized metal(gold and platinum)nanoparticles and metal nanoparticle/carbon nanotube hybrids [J].Langmuir,2009,25(5):2604-2612.
[16] Vollmer C,Janiak C.Naked metal nanoparticles from metal carbonyls in ionic liquids:easy synthesis and stabilization [J].Coord Chem Rev,2011,255(17/18):2039-2057.
[17] Fonseca G S,Umpierre A P,Fichtner P F P,et al.The use of imidazolium ionic liquids for the formation and stabilization of Ir0and Rh0nanoparticles:efficient catalysts for the hydrogenation of arenas [J].Chem -Eur J,2003,9(14):3263-3269.
[18] Mertens S F L,Vollmer C,Held A,et al.“Ligand-free” cluster quantized charging in an ionic liquid [J].Angew Chem,Int Ed,2011,50(41):9735-9738.
[19] Ponder J W.Tinker 6.1:Software tools for molecular design [M].Washington University School of Medicine,Saint Louis,MO,2012.
[20] Liu Zhiping,Huang Shiping,Wang Wenchuan.A refined force field for molecular simulation of imidazolium-based ionic liquids [J].J Phys Chem B,2004,108(34):12978-12989.
[21] Tay K A,Bresme F.Wetting properties of passivated metal nanocrystals at liquid-vapor interfaces:a computer simulation study [J].J Am Chem Soc,2006,128(43):14166-14175.
[22] Campbell P S,Santini C C,Bouchu D,et al.A novel stabilisation model for ruthenium nanoparticles in imidazolium ionic liquids:in situ spectroscopic and labelling evidence [J].Phys Chem Chem Phys,2010,12(16):4217-4223.
[23] Rubim J C,Trindade F A,Gelesky A,et al.Surface-enhanced vibrational spectroscopy of tetrafluoroborate 1-tyl-3-methylimidazolium(BMIBF4)ionic liquid on silver surfaces [J].J Phys Chem C,2008,112(49):19670-19675.
[24] Pensado A S,Padua A A H.Solvation and stabiziation of metallic nanoparticles in ionics liquids [J].Angew Chem,Int Ed,2011,50(37):8683-8687.
[25] Ferreira E S C,Pereira C M,Cordeiro M N D S,et al.Molecular dynamics study of the gold/ionic liquids interface [J].J Phys Chem B,2015,119(30):9883-9892.
[26] Kislenko S A,Samoylov I S,Amirov R H.Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6] [J].Phys Chem Chem Phys,2009,11(27):5584-5590.

备注/Memo

备注/Memo:
收稿日期:2016-04-08基金项目:科技部“863”计划(2012AA03A609),国家自然科学基金(21306070,21463011,21476099)和江西省自然科学基金(20151BAB203014)资助项目.通信作者:杨 振(1983-),男,江西进贤人,副教授,博士,主要从事功能材料的模拟计算研究.陈祥树(1966-),男,江西玉山人,教授,博士,博士生导师,主要从事膜分离与非均相催化研究.
更新日期/Last Update: 1900-01-01