参考文献/References:
[1] Douglas J,Peaceman D W.Numerical solution of two-dimensional heat flow problems [J].Am Inst Chem Eng,1955,1(4):505-512.
[2] Douglas J,Rachford H H.On the numerical solution of heat conduction problems in two and three space variables [J].Trans Am Math Soc,1956,136(82):421-439.
[3] Strang G.On the construction and comparison of difference scheme [J].SIAM J Numer Anal,1968,5(3):506-517.
[4] McLachlan R I,Quispel G R W.Splitting methods [J].Acta Numer,2002,11:341-434.
[5] Ma Yuanping,Kong Linghua,Hong Jialin.High-order compact splitting multisymplectic method for the coupled nonlinear Schr?dinger equations [J].Comput Math with Appl,2011,61(2):319-333.
[6] Weideman J A C,Herbst B M.Split-step methods for the solution of the nonlinear Schr?dinger equation [J].SIAM J Numer Anal,1986,23(3):485-507.
[7] Hong Jialin,Qin Mengzhao.Multisymplecticity of the centered box discretization for Hamiltonian PDEs with m≥2 space dimensions [J].Appl Math Letters,2002,15(8):1006-1011.
[8] Kong Linghua,Duan Yali,Wang Lan.Spectral-like resolution compact ADI finite difference method for the multi-dimensional Schr?dinger equations [J].Math Comput Model,2012,55(5/6):1798-1812.
[9] 马院萍,孔令华,王兰.2维 Schr?dinger方程的高阶ADI格式 [J].江西师范大学学报:自然科学版,2010,34(4):421-425.
[10] 符莉丹,孔令华,符芳芳.Schr?dinger方程的交替隐格式 [J].江西师范大学学报:自然科学版,2014,38(2):167-172.
[11] Douglas J,Kim S.Improved accuracy for locally one-dimensional methods for parabolic equation [J].Math Models Meth Appl Sci,2001,11(9):1563-1579.
[12] Li Jichun,Chen Yitung,Liu Guoqing.High-order compact ADI methods for the parabolic equations [J].Comput Math Appl,2006,52(8/9):1343-1356.
[13] 赵飞,蔡志权,葛永斌.1维非定向常对流扩散方程的有理型高阶紧致差分格式 [J].江西师范大学学报:自然科学版,2014,38(4):413-418.
[14] Gao Zhen,Xie Shusen.Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schr?dinger equations [J].Appl Numer Math,2011,61(4):593-614.
[15] 开依沙尔·热合曼,努尔买买提·黑力力.求解对流扩散方程的Padé逼近格式 [J].江西师范大学学报:自然科学版,2014,38(3):261-264.
[16] Lele S K.Compact finite difference schemes with spectral-like solution [J].J Comput Phys,1992,103(1):16-42.