[1]胡 彬,邱淑芳,杨志辉,等.一种新的4阶偏微分方程图像处理方法[J].江西师范大学学报(自然科学版),2016,40(06):603-607.
 HU Bin,QIU Shufang,YANG Zhihui,et al.The Image Denoising by Fourth-Order Partial Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(06):603-607.
点击复制

一种新的4阶偏微分方程图像处理方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年06期
页码:
603-607
栏目:
出版日期:
2016-12-01

文章信息/Info

Title:
The Image Denoising by Fourth-Order Partial Differential Equations
作者:
胡 彬邱淑芳杨志辉袁邵祎
1.东华理工大学理学院,江西 南昌 330013; 2.东北大学秦皇岛分校控制工程学院,河北 秦皇岛 066004
Author(s):
HU BinQIU ShufangYANG ZhihuiYUAN Shaoyi
1.School of Science,East China Institute of Technology,Nanchang Jiangxi 330013,China; 2.School of Control Engineering Northeastern University at Qinhuangdao,Qinhuangdao Hebei 066004,china
关键词:
图像去噪 各向异性扩散 形态学扩散去噪 4阶偏微分方程
Keywords:
image denoising anisotropic diffusion morphological anisotropic diffusion fouth-order partial differential equations
分类号:
O 241.8; O 241.6
摘要:
提出了一种新的4阶偏微分方程去噪模型,与已有4阶偏微分方程模型、各向异性扩散模型、各向异性中值扩散模型和形态学扩散去噪模型相比较,该模型有效地权衡了噪声平滑效果和边缘保持,并通过数值算例验证了该模型的优越性.
Abstract:
A new denoising model of four order partial differential equations which can be proved to be stable to overcome this deficiency is presented.A comparison among previous fourth-order differential equation,anisotropic diffusion,anisotropic median-diffusion and morpholocical anisotropic diffusion is drawn.The experimental results are also given.

参考文献/References:

[1] Liu Xiaoyang,Lai Hangchin,Pericleous K A.A fourth-order partial differential equation denoising model with an adaptive relaxation method [J].International Journal of Computer Mathematics,2015,92(3):608-622.
[2] Wang Dehua,Gao Jinghuai.An improved noise removal model based on nonlinear fourth-order partial differential equations [J].International Journal of Computer Mathematics,2016,93(6):942-954.
[3] Segall C A,Acton S T.Morphological anisotropic diffusion [J].IEEE International Conference on Image Processing,1997,3:348-351.
[4] You Yuli,Kaveh M.Fourth-order partial differential equations for noise removal [J].IEEE Trans On Image Processing,2000,9(10):1723-1730.
[5] Bertozzi A L.The mathematics of moving contact lines in thin liquid films [J].Notices AMS,1998,45(6/7):689-697.
[6] Kimia B,Tannenbaum A,Zucker S.On the evolution of curves via a function of curvature I [J].Math Anal Applicant,1992,163:438-458.
[7] Catt’e F,Lions P L,Morel J M,et al.Image selective smoothing and edge detectionly nonlinear diffusion [J].SIAM J Numerical Analysis,1992,29(1):182-193.
[8] Rudin W.Analysis fonctionnelle,th’eorie et applications [M].Paris:Masson,1987.
[9] Chen Yumei,Vemuri B C,Wang Li.Image denoising and segmentation via nonlinear diffusion [J].Computers and Mathematics with Applications,2000,39:131-149.
[10] Bertalmio M,Sapiro G,Caselles V,et al.Image inpainting [C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,New York:ACM Press,Addison-Wesley Publishing Co,2000:417-424.
[11] Zeng Weili,Lu Xiaobo,Tan Xianghua.A local structural adaptive partial differential equation for image denoising [J].Multimedia Tools and Applications,2015,74(3):743-757.
[12] Tudor Barbu.Nonlinear fourth-order hyperbolic PDE-based image restoration scheme [C]//The 5th IEEE International Conference on E-Health and Bioengineering,Romania:Lasi,2015:19-21.
[13] Tudor Barbu.PDE-based restoration model using nonlinear second and fourth order diffusions [J].Proceeding of the Romanian Academy,Series A,2015,16(2):138-146.
[14] Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion [J].IEEE Trans On PAMI,1990,12(7):629-639.
[15] Ling Jian,Bovik A C.Smoothing low-SNR molecular medical image [J].IEEE Transactions on Medical imaging,2002,21(4):377-384.

备注/Memo

备注/Memo:
收稿日期:2016-10-10基金项目:国家自然科学基金(11561003)和江西省教育厅科技计划课题(GJJ14469)资助项目.作者简介:胡 彬(1982-),女,江西南丰人,讲师,主要从事数学物理方程反问题理论及计算研究.
更新日期/Last Update: 1900-01-01