[1]匡立群,孔令华,王 兰,等.2维Ginzburg-Landau方程的分裂LOD高阶紧致格式[J].江西师范大学学报(自然科学版),2017,(01):35-38.
 KUANG Liqun,KONG Linghua,WANG Lan,et al.The Splitting High-Order Compact Scheme for Two-Dimensional Ginzburg-Landau Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(01):35-38.
点击复制

2维Ginzburg-Landau方程的分裂LOD高阶紧致格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年01期
页码:
35-38
栏目:
出版日期:
2017-01-01

文章信息/Info

Title:
The Splitting High-Order Compact Scheme for Two-Dimensional Ginzburg-Landau Equation
作者:
匡立群孔令华王 兰郑小红
1.江西师范大学数学与信息科学学院,江西 南昌 330022; 2.广东农工商职业技术学院基础部,广东 广州 510507
Author(s):
KUANG LiqunKONG LinghuaWANG LanZHENG Xiaohong
1.College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi,330022,China; 2.Foundation Department,Guangdong AIB Polytechnic College,Guangzhou Guangdong 510501,China
关键词:
Ginzburg-Landau方程 分裂法 局部1维法 高阶紧致格式.
Keywords:
Ginzburg-Landau equation splitting method local one-dimensional method high order compact scheme
分类号:
O 241.82
文献标志码:
A
摘要:
采用分裂技巧研究了2维的Ginzburg-Landau方程构造高效的数值格式.把2维Ginzburg-Landau方程变成线性和非线性问题以避免求解耦合的非线性方程组.为减少存储量和计算量,对线性问题进一步运用局部1维方法,把它分解为2个1维问题求解.所得到的数值格式具有高效、高精度等数值特征.最后,用数值算例模拟了2维Ginzburg-Landau方程所描述的物理现象,新方法具有较大的优越性.
Abstract:
The efficient numerical scheme for two-dimensional Ginzburg-Landau equation is studied by splitting method.The two-dimensional Ginzburg-Landau equation is altered into a linear problem and a nonlinear problem in order to avoid solving a coupled nonlinear algebraic system.In order to reduce storage and computation,the linear problem can be decomposed into two one dimensional problems by local one-dimensional method.The scheme has the numerical characteristics such as high efficiency,high accuracy.Finally,some numerical experiments are reported to simulate the physical phenomena described by two-dimensional Ginzburg-Landau equation,and the superiority of our scheme can be verified by the experiments.

参考文献/References:


[1〗 郭柏灵,黄海洋,蒋慕蓉.金兹堡-朗道方程 [M].北京:科学出版社,2002.
[2] 袁起立,郦智斌,姜勇刚.朗道及其对物理学的贡献 [J].物理通报,2010,2(6):68-70.
[3] Kai Velten.数学建模与仿真:科学与工程导论 [M].周旭,译.北京:国防工业出版社,2012.
[4] Bu Charles.On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation [J].J Aust Math Soc Ser B,1994,36(3):313-324.
[5] Li Yongsheng,Guo Boling.Global existence of solutions to the derivative Ginzburg-Landau equation [J].J Math Anal Appl,2000,249(2):412-432.
[6] Lü Shujuan,Lu Qishao.Exponential attractor for the 3D Ginzburg-Landau type equation [J].Nonlin Analy,2007,67(11):3116-3135.
[7] 刘常福,戴正德.2维广义Ginzburg-Landau方程在Banach空间的指数吸引子 [J].应用数学学报,2005,28(1):134-142.
[8] Wang Tingchun,Guo Boling.Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation [J].Numer Methods Partial Diff Eq,2011,27(5):1340-1363.
[9] McLachlan R,Quispel G.Splitting methods [J].Acta Numer,2002,11(11):1055-1067.
[10] 周文英,孔令华,王兰,等.3维Maxwell方程局部1维多辛格式的能量恒等式 [J].江西师范大学学报:自然科学版,2015,39(1):55-58.
[11] 童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式 [J].江西师范大学学报:自然科学版,2014,38(5):521-525.
[12] 张文生.科学计算当中的偏微分方程有限差分法 [M].北京:高等教育出版社,2006.
[13] Lele S K.Compact finite difference schemes with spectral-like solution [J].J Comput Phys,1992,103(1):16-42.
[14] 赵飞,蔡志权,葛永斌.1 维非定常对流扩散方程的有理型高阶紧致差分格式 [J].江西师范大学学报:自然科学版,2014,38(4):413-418.
[15] Strang G.On the construction and comparison of difference schemes [J].SIAM J Numer Anal,1968,5(3):506-517.

备注/Memo

备注/Memo:
收稿日期:2016-10-15基金项目:国家自然科学基金(11301234,11271171)和江西省自然科学基金(20142BCB23009,20161ACB20006)资助项目.通信作者:孔令华(1977-),男,江西石城人,教授,博士,主要从事偏微分方程数值解法的研究.E-mail:konglh@mail.ustc.edu.cn
更新日期/Last Update: 1900-01-01