参考文献/References:
[1〗 郭柏灵,黄海洋,蒋慕蓉.金兹堡-朗道方程 [M].北京:科学出版社,2002.
[2] 袁起立,郦智斌,姜勇刚.朗道及其对物理学的贡献 [J].物理通报,2010,2(6):68-70.
[3] Kai Velten.数学建模与仿真:科学与工程导论 [M].周旭,译.北京:国防工业出版社,2012.
[4] Bu Charles.On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation [J].J Aust Math Soc Ser B,1994,36(3):313-324.
[5] Li Yongsheng,Guo Boling.Global existence of solutions to the derivative Ginzburg-Landau equation [J].J Math Anal Appl,2000,249(2):412-432.
[6] Lü Shujuan,Lu Qishao.Exponential attractor for the 3D Ginzburg-Landau type equation [J].Nonlin Analy,2007,67(11):3116-3135.
[7] 刘常福,戴正德.2维广义Ginzburg-Landau方程在Banach空间的指数吸引子 [J].应用数学学报,2005,28(1):134-142.
[8] Wang Tingchun,Guo Boling.Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation [J].Numer Methods Partial Diff Eq,2011,27(5):1340-1363.
[9] McLachlan R,Quispel G.Splitting methods [J].Acta Numer,2002,11(11):1055-1067.
[10] 周文英,孔令华,王兰,等.3维Maxwell方程局部1维多辛格式的能量恒等式 [J].江西师范大学学报:自然科学版,2015,39(1):55-58.
[11] 童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式 [J].江西师范大学学报:自然科学版,2014,38(5):521-525.
[12] 张文生.科学计算当中的偏微分方程有限差分法 [M].北京:高等教育出版社,2006.
[13] Lele S K.Compact finite difference schemes with spectral-like solution [J].J Comput Phys,1992,103(1):16-42.
[14] 赵飞,蔡志权,葛永斌.1 维非定常对流扩散方程的有理型高阶紧致差分格式 [J].江西师范大学学报:自然科学版,2014,38(4):413-418.
[15] Strang G.On the construction and comparison of difference schemes [J].SIAM J Numer Anal,1968,5(3):506-517.