[1]吴伯凯,许文馨,闫争争,等.人体脑血流问题的并行数值模拟[J].江西师范大学学报(自然科学版),2018,(02):198-202.[doi:10.16357/j.cnki.issn1000-5862.2018.02.14]
 WU Bokai,XU Wenxin,YAN Zhengzheng,et al.The Parallel Numerical Simulation of Some Cerebral Flow[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(02):198-202.[doi:10.16357/j.cnki.issn1000-5862.2018.02.14]
点击复制

人体脑血流问题的并行数值模拟()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
198-202
栏目:
数学与应用数学
出版日期:
2018-04-20

文章信息/Info

Title:
The Parallel Numerical Simulation of Some Cerebral Flow
文章编号:
1000-5862(2018)02-0198-05
作者:
吴伯凯1许文馨2闫争争2孙 哲1*陈荣亮2刘 嘉2
1.江西师范大学数学与信息科学学院,江西 南昌 330022; 2.中国科学院深圳先进技术研究院,广东 深圳 518055
Author(s):
WU Bokai1XU Wenxin2YAN Zhengzheng2SUN Zhe1*CHEN Rongliang2LIU Jia2
1.College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen Guangdong 518055,China
关键词:
血流动力学 有限元方法 流体计算 并行计算 区域分解算法
Keywords:
hemodynamics finite element method computational fluid dynamics parallel computing domain decomposition method
分类号:
O 246
DOI:
10.16357/j.cnki.issn1000-5862.2018.02.14
文献标志码:
A
摘要:
设计了一套高性能血流动力学数值模拟系统,包括几何模型构建、计算网格生成、流体方程离散和求解以及计算结果可视化和分析等模块.重点介绍流体方程的求解模块,并通过对北京天坛医院提供的1个真实脑中风病例(包括术前和术后)的血流动力学瞬态模拟案例来验证系统的可靠性和效率.模拟结果显示:计算获得的各项参数(包括压力、速度、剪切力等)的分布与临床观察结果基本一致.该系统的并行性能测试结果显示:当模型的网格单元数量为2.12×106,CPU核数扩展至128时,系统仍可达到72.43%的并行效率.
Abstract:
A set of high performance numerical simulation system for human hemodynamics is developed.The system includes the construction of 3D artery geometry from MRI images,unstructured mesh generation,the discretization and solution of the fluid flow equations,and the analysis of the generation of results.The flow equations solver part in this paper is mainly focused on and the reliability and efficiency of the system are verified by solving a real patient case of stroke(including preoperative and postoperative cases)which is provided by Beijing Tiantan Hospital.The results show that the computed values,including the pressure,the velocity and the wall shear stress are consistent with the clinical conclusion.Regarding to the parallel performance of the method,an almost linear speedup is obtained with up to 128 processor cores for a case with 2.12×106 mesh elements and the parallel efficiency is still around 72.43%.

参考文献/References:

[1] 徐梦佳,杨金柱,赵宏,等.面向血管疾病诊断及预测分析的血流动力学模拟综述[J].中国图象图形学报,2015,20(3):297-310.
[2] 刘有军,乔爱科,黄伟,等.血流动力学数值模拟与动脉粥样硬化研究进展[J].力学进展,2002,32(3):435-443.
[3] 阿都建华,尹立雪,谢盛华.心脏流场数值模拟研究现状与趋势[J].中华医学超声杂志:电子版,2015,12(12):911-915.
[4] 任国荣,姜平,曹枭强,等.基于CT 的3维颈内动脉瘤手术前后的血流动力学分析[J].介入放射学杂志,2013,22(10):825-829.
[5] 陈尼卡.颈动脉支架植入后的血流动力学改变[J].中国组织工程研究与临床康复,2008,12(35):6923-6926.
[6] Younis H F,Kaazempur-Mofrad M R,Chung C,et al.Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation[J].Annals of Biomedical Engineering,2003,31(8):995-1006.
[7] Peng Hongmei,Yang Dequan.The boundary element analysis on Y bifurcation arterial hemodynamic characteristics[J].Chinese Journal of Medical Physics,2012,28(5):2937-2940.
[8] Abdoulaev G,Cadeddu S,Delussu G,et al.ViVa:the virtual vascular project[J].IEEE Transactions on Information Technology in Biomedicine,1998,2(4):268-274.
[9] Qiao Aike,Guo Xingling,Wu Shigui,et al.Numerical study of nonlinear pulsatile flow in S-shaped curved arteries[J].Medical Engineering and Physics,2004,26(7):545-552.
[10] Cai Xiaochuan,Gropp W D,Keyes D E,et al.Newton-Krylov-Schwarz methods in CFD[C]//Friedrich-Karl Hebeker.Notes on numerical fluid mechanics.Wiesbaden:Springer,1994,47:17-30.
[11] 何霞辉,李庆国,杨海建.求解互补问题的Newton-Krylov-Schwarz算法[J].湖南大学学报:自然科学版,2010,37(12):90-92.
[12] Hwang Fengnan,Cai Xiaochuan.A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations[J].Journal of Computational Physics,2005,204(2):666-691.
[13] Cai Xiaochuan,Sarkis M.A restricted additive Schwarz preconditioner for general sparse linear systems[J].SIAM Journal on Scientific Computing,1999,21(2):792-797.
[14] 陈荣亮,蔡小川.高可扩展区域分解算法及其在流体模拟和优化问题中的应用[J].中国科学:数学,2016,46(7):915-928.
[15] Panerai R B,Dineen N E,Brodie F G,et al.Spontaneous in cerebral blood flow regulation:contribution of PaCO2[J].Applied Physiology,2010,109(6):1860-1868.

备注/Memo

备注/Memo:
收稿日期:2017-11-15
基金项目:国家863计划课题(2015AA01A302)和国家自然科学基金(91330111,11401564,61531166003)资助项目.
通信作者:孙 哲(1983-),男,湖南邵阳人,副教授,博士,主要从事计算流体力学、偏微分方程数值解等方面的研究.E-mail:snzma@126.com
更新日期/Last Update: 2018-04-20