[1]史旭栋,高岳林*.基于模糊推理的鸡群优化算法[J].江西师范大学学报(自然科学版),2018,(03):323-330.[doi:10.16357/j.cnki.issn1000-5862.2018.03.17]
 SHI Xudong,GAO Yuelin*.The Chicken Swarm Optimization Algorithm Based on Fuzzy Reasoning[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(03):323-330.[doi:10.16357/j.cnki.issn1000-5862.2018.03.17]
点击复制

基于模糊推理的鸡群优化算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年03期
页码:
323-330
栏目:
信息科学与技术
出版日期:
2018-06-20

文章信息/Info

Title:
The Chicken Swarm Optimization Algorithm Based on Fuzzy Reasoning
文章编号:
1000-5862(2018)03-0323-08
作者:
史旭栋1高岳林2*
1.宁夏大学数学统计学院,宁夏 银川 750021; 2.北方民族大学信息与系统科学研究所,宁夏 银川 750021
Author(s):
SHI Xudong1GAO Yuelin2*
1.School of Mathematics and Computer,Ningxia University, Yinchuan Ningxia 750021,China; 2.Research Institute of Information and System Computation Science,Beifang University of Nationalities,Yinchuan Ningxia 750021,China
关键词:
鸡群优化 模糊推理 惯性粒子
Keywords:
chicken swarm optimization fuzzy reasoning weighted particle
分类号:
TP 18
DOI:
10.16357/j.cnki.issn1000-5862.2018.03.17
文献标志码:
A
摘要:
针对鸡群算法(CSO)在求解高维复杂优化问题时往往会陷入局部解的问题,提出了基于模糊推理的鸡群优化算法.该方法利用模糊推理改进了母鸡和小鸡的位置更新公式,增强了鸡群全局搜索能力; 利用惯性粒子,增强了鸡群的信息共享,从而增加了局部搜索能力,并用Tent映射对粒子进行扰动.数值试验结果表明:该算法能快速收敛到全局最优解,而且具有较高的全局寻优能力和计算精度.
Abstract:
According to the fact that CSO algorithm is often trapped in local solution when solving high dimensional and complex optimization problem,the fuzzy reasoning has been used to modify position update formula of hens and chickens,which enhances global search ability of chicken group.And then the weighted particle is used to improve information sharing among chicken so that local search ability is increased.Finally,the Tent mapping has been used to perturb particle,and the chichen swarm optimization algorithm based on fuzzy reasoning is proposed.Numerical experiments show that the algorithm can converge to the global optimal solution quickly,and has high global optimization ability and computational accuracy.

参考文献/References:

[1] Reynolds C W.Flocks,herds,and school:a distributed behavioral model [J].ACM,1998,21(4):25-34.
[2] Kennedy J,Eberhart R C.Particle swarm optimization [J].IEEE International Conference on Neural Networks,1995,4:1942-1948.
[3] Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents [J].IEEE Transactions on Systems Man and Cybernetics,Part B:Cybernetics,1996,26(1):29-41.
[4] Yang Xinshe.A new metaheuristic bat-inspired algorithm [J].Computer Knowledge & Technolog,2010,284:65-74.
[5] Kundu R,Das S,Mukherjee S,et al.An improved particle swarm optimizer with difference mean based perturbation [J].Neurocomputing,2014,129:315-333.
[6] Gaing Z L.A particle swarm optimization approach for optimum design of PID controller in AVR system [J].IEEE Trans Energy Convers,2004,19:384-391.
[7] Hong Yingyi,Lin Faa-Jeng,Chen Syuan-Yi,et al.A novel adaptive elite-based particle swarm optimization applied to VAR optimization in electric power systems [J].Mathematical Problems in Engineering,2014(4):1-14.
[8] Cavuslu M A,Karakuzu C,Karakaya F.Neural identification of dynamic system on FPGA with improved PSO learning [J].Appl Soft Comput,2012,12:2707-2718.
[9] Meng Xianbing,Liu Yu,Gao Xiaozhi,et al.A new bio-inspired algorithm: chicken swarm optimization [C]∥5th International Conference in Swarm Intelligence.Hefei:Springer International Publishing,2014:86-94.
[10] Kong Fei,Wu Dinghui.An improved chicken swarm optimization algorithm [J].Journal of Jiangnan University:Natural Science Edition,2015,14(6):681-689.
[11] Li Zhenbi,Wang Kang,Jiang Yuanyuan.The study of improved chicken swarm optimization algorithm based on simulated annealing [J].Microelectronics and Computer,2016,34(2):30-38.
[12] Cui Dongwen.Projection pursuit model for evaluation of flood and drought disasters based on chicken swarm optmization algorithm [J].Advances in Science and Technology of Water Resources,2016,36(2):16-24.
[13] Wei-der Chang,Shih S P.PID controller design of nonlinear systems using an improved particle swarm optimization approach [J].Communications in Nonlinear Science & Numerical Simulation,2010,15(11):3632-3639.
[14] Liu Yu,Qin Zheng,Shi Zhewen,et al.Center particle swarm optimization [J].Neurocomputing,2007,70(4):672-679.
[15] Li Nai-Jen,Wang Wen-June,James Hsu C C,et al.Enhanced particle warm optimizer incorprating a weighted particle [J].Neurocomputing,2014,124(2):218-227.
[16] Feng Hsuan-Ming.Particle swarm optimization learning fuzzy system design [EB/OL].
[2016-12-17]. http://www.nqu.edu.tw/upload/educsie/attachment/a56c6dad-1534fa61cff0a13726373e49.pdf.
[17] Shi Yuhui,Eberhart R C.Fuzzy adaptive particle swarm optimization [J].Congress on Evolutionary Computation,2001,1(12):101-106.
[18] Zhan Zhihui,Zhang Jun,Li Yun,et al.Adaptive particle swarm optimization [J].IEEE Trans Syst Man Cybern Part B:Cybern,2009,39:1362-1381.
[19] Bevrani H,Habibi F,Babahajyani P,et al.Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach [J].IEEE Transactions on Smart Grid,2012,3(4):1935-1944.
[20] Prado R P,Garcia-Galan S,Mufioz Exposito J E,et al.Knowledge acquisition in fuzzy-rule-based systems wit particle swarm optimization [J].IEEE Trans Fuzzy Syst,2010,18:1083-1097.
[21] Meng Xianbing,Yu Liu,Gao Xiaozhi,et al.A new bio-inspired algorithm:chicken swarm optimization [M].New York:Springer International,2014:86-94.
[22] Wen-June Wang,Hwan-Rong Lin.Fuzzy control design for the trajectory tracking on uncertain nonlinear systems [J].IEEE Trans Fuzzy Syst,1999,7(1):53-62.
[23] Teng Youwei,Wen-June Wang.Constructing a user-friendly Ga-based fuzzy system directly from numerical data [J].IEEE TransSyst Man,Cybern,Part B:Cybern,2004,34:2061-2070.
[24] Li Naijen,Wang Wenjune,Chen-chien James Hsu.Hybrid particle swarm optimization incorporating fuzzy rensoning and weighted particle [J].Neurocomputing,2015,167:188-501.
[25] Liu Bo,Wang Ling,Jin Yihui,et al.Improved particle swarm optimization combined with chaos [J].Chaos,Solitons Fractals,2005,25(5):1261-1271.
[26] Kong Fei,Wu Dinghui.An improved chicken swarm optimization algorithm [J].Journal of Jiangnan University,2015,14(6):681-688.

备注/Memo

备注/Memo:
收稿日期:2017-08-06
基金项目:国家自然科学基金(61561001)和北方民族大学重点科研基金(2015KJ10)资助项目.
通信作者:高岳林(1963-),陕西榆林人,教授,博士,主要从事最优化理论方法及应用,智能计算机与智能信息处理研究.E-mail:1787958385@qq.com
更新日期/Last Update: 2018-06-20