参考文献/References:
[1] 周志华.机器学习[M].北京:清华大学出版社,2016.
[2] Quinlan J R.Induction of decision trees[J].Machine Learning,1986,1(1):81-106.
[3] Quinlan J R.C4.5:Programs for machine learning[EB/OL].
[2017-03-17].http://ishare.iask.sina.com.cn/f/12391571.html.
[4] Chen Kunhuang,Wang Kungjeng,Wang Kungmin,et al.Applying particle swarm optimization-based decision tree classifierfor cancer classification on gene expression data[J].Applied Soft Computing,2014:24(C):773-780.
[5] Chen Cuihua,He Binbin,Zeng Ze.A method for mineral prospectivity mapping integrating C4.5 decision tree,weights-of-evidence and m-branch smoothing techniques:a case study in the eastern Kunlun Mountains,China[J].Earth Science Informatics,2014,7(1):13-24.
[6] Huang Aihui.C4.5 algorithm of decision tree improvement and application[J].Science Technology and Engineering,2009(1):34-36,42.
[7] Jia Ping,Dai Jianhua,Pan Yunhe,et al.Novel algorithm for attribute reduction based on Mutual-information gain ratio[J].Journal of Zhejiang University:Engineering Science,2006,40(6):1041-1044,1070.
[8] 王靖,王兴伟,赵悦.基于变精度粗糙集决策树垃圾邮件过滤[J].系统仿真学报,2016,28(3):705-710.
[9] 张棪,曹健.面向大数据分析的决策树算法[J].计算机科学,2016(S1):374-379,383.
[10] 于菲,张敏灵.基于决策树集成的偏标记学习算法[J].模式识别与人工智能,2016,29(4):367-375.
[11] 王杰,蔡良健,高瑜.一种基于决策树的多示例学习算法[J].郑州大学学报:理学版,2016,48(1):81-84.
[12] 王忠民,张琮,衡霞.CNN与决策树结合的新型人体行为识别方法研究[J].计算机应用研究,2017(12):1-2.
[13] 王世东,刘毅,王新闯,等.基于改进决策树模型的矿区土地复垦适宜性评价[J].中国水土保持科学,2016,14(6):35-43.
[14] 李瑞红,李智,童玲.蚁群路径优化决策树在慢性肾病分期诊断中的应用[J].软件导刊,2017,16(2):135-138.
[15] 谢振平,孙桃.自组织决策树的联想记忆在线学习模型[J].模式识别与人工智能,2017,30(1):21-31.
[16] 张巍,聂进,滕少华.基于互信息的模糊决策树及其增量学习[J].江西师范大学学报:自然科学版,2014,38(1):89-94.
[17] 李航.统计学习方法[M].北京:清华大学出版社,2012.
相似文献/References:
[1]滕少华,胡俊,张巍,等.支持向量机与哈夫曼树实现多分类的研究[J].江西师范大学学报(自然科学版),2014,(04):383.
TENG Shao-hua,HU Jun,ZHANG Wei,et al.The Research of Multi-Classification Based on SVM and Huffnan Tree[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(04):383.