[1]刘馨婷,彭思韦,涂冬波*.双因子模型下CAT测验优化设计及其效果验证[J].江西师范大学学报(自然科学版),2019,(02):128-134.[doi:10.16357/j.cnki.issn1000-5862.2019.02.03]
 LIU Xinting,PENG Siwei,TU Dongbo*.The Optimization of Testing Design for CAT with Bifactor Model and Its Application[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(02):128-134.[doi:10.16357/j.cnki.issn1000-5862.2019.02.03]
点击复制

双因子模型下CAT测验优化设计及其效果验证()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
128-134
栏目:
心理与教育测量
出版日期:
2019-04-10

文章信息/Info

Title:
The Optimization of Testing Design for CAT with Bifactor Model and Its Application
文章编号:
1000-5862(2019)02-0128-07
作者:
刘馨婷彭思韦涂冬波*
江西师范大学心理学院,江西 南昌 330022
Author(s):
LIU XintingPENG SiweiTU Dongbo*
College of Psychology,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
双因子模型 计算机化自适应测验 双因子模型计算机化自适应测验 多级评分
Keywords:
bifactor model computerized adaptive testing BCAT polytomously score
分类号:
B 841
DOI:
10.16357/j.cnki.issn1000-5862.2019.02.03
文献标志码:
A
摘要:
在2种传统的BCAT测验设计的基础上,提出了4种新的BCAT测验设计,并采用国际上通用的Monte Carlo模拟实验的方式,从被试能力参数估计精度、题库使用的曝光率及测验的效率等3大指标来验证新开发的4种BCAT测验设计,再与传统的BCAT测验设计进行比较,以验证该文提出的4种新的BCAT测验设计的科学性、效果及优势.最后,对BCAT测验设计在实际应用中的选用提出了具体的意见与建议,以供实际应用者参考及借鉴.
Abstract:
Four new type of testing designs of computerized adaptive testing with bifactor model(BCAT)has been proposed on the basis of two traditional testing designs for BCAT.Two proposed optimality testing designs belong to the unidimensional BCAT,which are called as UBCAT_optimality1 and UBCAT_optimality2,respectively.Another two proposed optimality testing designs belongs to the multidimensional BCAT,which are called as MBCAT_optimality1 and MBCAT_optimality2,respectively.Results showed that:(i)The proposed four optimality designs for BCAT overall had higher parameter estimation precision of both general factor and special domain factor,than two exiting designs for BCAT.(ii)As for item bank exposure rate,the MBCAT designs were better than the UBCAT designs.The proposed MBCAT_optimality1 and the exiting MBCAT performed best in item exposure control.(iii)On test efficiency,the UBCAT designs used fewer items than those of the MBCAT designs.

参考文献/References:

[1] Chen Fangfang,West S G,Sousa K H.A comparison of bifactor and second-order models of quality of life[J].Multivariate Behavioral Research,2006,41(2):189-225.
[2] Gibbons R D,Weiss D J,Pilkonis P A,et al.Development of a computerized adaptive test for depression[J].American Journal of Psychiatry,2013,69(11):1104-1112.
[3] Gibbons R D,Weiss D J,Pilkonis P A,et al.Development of the cat-anx:a computerized adaptive test for anxiety[J].American Journal of Psychiatry,2014,171(2):187-194.
[4] Weiss D J,Gibbons R D.Computerized adaptive testing with the bifactormodel[EB/OL].[2018-06-12].http://publicdocs.iacat.org/cat2010/cat07weiss&gibbons.pdf
[5] Segall D O.Multidimensional adaptive testing[J].Psychometrika,1996,61(2):331-354.
[6] Seo D G,Weiss D J.Best design for multidimensional computerized adaptive testing with the bifactor model[J].Educational & Psychological Measurement,2015,75(6):954-978.
[7] Wang Chun,Chang Huahua,Boughton K A.Deriving stopping rules for multidimensional computerized adaptive testing[J].Applied Psychological Measurement,2013,37(37):99-122.
[8] Samejima F.Graded response model[M]∥van der Linden W J,Hambleton R K.Handbook of modern item response theory.New York:Springer-New York Press,1997:85-100.
[9] Mulder J,van der Linden W J.Multidimensional adaptive testing with optimal design criteria for item selection[J].Psychometrika,2009,74:273-296.
[10] Mulder J,van der Linden W J.Multidimensional adaptive testing with Kullback-Leibler information item selection[EB/OL].[2018-09-16].doi:10.1007/978-0-387-85461-8.

相似文献/References:

[1]邱 敏,罗 芬,熊建华,等.动态加权区间的CAT选题策略研究[J].江西师范大学学报(自然科学版),2018,(02):139.[doi:10.16357/j.cnki.issn1000-5862.2018.02.04]
 QIU Min,LUO Fen,XIONG Jianhua,et al.The Study on Item Selection Method of CAT with Dynamic Weighted Interval[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(02):139.[doi:10.16357/j.cnki.issn1000-5862.2018.02.04]
[2]汪大勋,涂冬波*.认知诊断计算机化自适应测量技术在心理障碍诊断与评估中的应用[J].江西师范大学学报(自然科学版),2021,(02):111.[doi:10.16357/j.cnki.issn1000-5862.2021.02.01]
 WANG Daxun,TU Dongbo*.The Application of Cognitive Diagnostic Computerized Adaptive Testing on Diagnosis and Assessment of Psychological Disorder[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(02):111.[doi:10.16357/j.cnki.issn1000-5862.2021.02.01]

备注/Memo

备注/Memo:
收稿日期:2018-10-21 基金项目:国家自然科学基金(31660278,31760288)资助项目. 通信作者:涂冬波(1978-),男,江西南昌人,教授,博士,博士生导师,主要从事心理统计与测量的研究.E-mail:tudongbo@aliyun.com
更新日期/Last Update: 2019-04-10