[1]付剑茹,叶猛华,万文昊.模型重置与期货套期保值效率[J].江西师范大学学报(自然科学版),2019,(02):196-205.[doi:10.16357/j.cnki.issn1000-5862.2019.02.14]
 FU Jianru,YE Menghua,WAN Wenhao.The Model Reset and the Efficiency of Futures Hedging[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(02):196-205.[doi:10.16357/j.cnki.issn1000-5862.2019.02.14]
点击复制

模型重置与期货套期保值效率()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
196-205
栏目:
数学与应用数学
出版日期:
2019-04-10

文章信息/Info

Title:
The Model Reset and the Efficiency of Futures Hedging
文章编号:
1000-5862(2019)02-0196-10
作者:
付剑茹1叶猛华1万文昊2
1.江西师范大学财政金融学院,江西 南昌 330022; 2.江西省高速公路投资集团有限责任公司,江西 南昌 330025
Author(s):
FU Jianru1YE Menghua1WAN Wenhao2
1.College of Finance,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Jiangxi Provincial Expressway Investment Group Company Ltd,Nanchang Jiangxi 330025,China
关键词:
长记忆性 套期保值 模型重置 GARCH模型
Keywords:
long memory hedging model reset GARCH models
分类号:
F 830.9
DOI:
10.16357/j.cnki.issn1000-5862.2019.02.14
文献标志码:
A
摘要:
在套期保值实务中,市场不断受到新的冲击,波动率瞬息万变,过于久远的历史数据可能对投资者产生误导.传统的套期保值方法是利用全期历史样本来估计当期最优套期保值比率,但中国股票市场与股指期货收益率是否具有长记忆性?早期样本信息是否可靠?为解答这些问题,该文尝试提出模型重置概念,保持每次建模的样本数量一定,向前一步预测时按时序引入新样本,同时剔除早期样本; 在此基础上选取能有效刻画市场收益率长记忆性的CCC、DCC、GOGARCH模型对中国沪深300、中证500、上证50股指期货的时变套期保值比率进行估计,进而对比模型重置前后的套期保值效率.结果表明:模型重置后,套期保值效率更高; 模型重置周期越短(样本越新鲜),套期保值效率越高.这说明在利用沪深300、中证500、上证50股指期货对冲中国股票资产时,应避免受到早期历史数据的影响.
Abstract:
Market is constantly under new shocks in hedging practice and volatility is varying from minute to minute,thus long-term historical data may mislead investors.The traditional hedging method is to estimate the optimal hedging ratio in the current period by using full historical samples,nevertheless,does stock market and stock index futures yield has long memory in China?Is early sample information reliable?To answer this question,it is attempted to propose the concept of model reset that is maintaining a certain number of samples for each modeling,introducing new sample in time sequence and eliminating early sample in one-step-ahead forecast.On this basis,CCC,DCC and GOGARCH models are selected,which can effectively depict the long memory of market returns,to estimate the time-varying hedging ratios of CSI 300,CIC 500,SSE 50 stock index futures in China,and then compare the hedging efficiency before and after the model reset.The results show that the hedging efficiency is higher after model reset,and the shorter the reset period(the fresher the sample),the higher the hedging efficiency.It illustrates that early historical data should be avoided in hedging China's stock assets with CSI 300,CIC 500,SSE 50 stock index futures.

参考文献/References:

[1] Johnson L L.The theory of hedging and speculation in commodity futures[J].The Review of Economic Studies,1960,27(3):139-151.
[2] Ederington L H.The hedging performance of the new futures markets[J].The Journal of Finance,1979,34(1):157-170.
[3] Holmes P.Stock index futures hedging:hedging ratio estimation,duration effects,expiration effects and hedge ratio stability[J].Journal of Business Finance and Accounting,1996,23(1):63-77.
[4] Park H Y,Bera A K.Interest-rate volatility,basis risk and heteroscedasticity in hedging mortgages[J].Real Estate Economics,1987,15(2):79-97.
[5] Engle R F.Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J].Econometrica:Journal of the Econometric Society,1982,50(4):987-1007.
[6] Bollerslev T.Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,1986,31(3):307-327.
[7] Baillie R T,Myers R J.Bivariate GARCH estimation of optimal commodity futures hedge[J].Journal of Applied Econometrics,1991,6(2):109-124.
[8] Park T H,Switzer L N.Bivariante GARCH estimation of the optimal hedge rations for stock index futures:a note[J].Journal of Futures Markets,1995,15(1):61-67.
[9] Kroner K F,Sultan J.Time-varying distributions and dynamic hedging with foreign currency futures[J].Journal of Financial and Quantitative Analysis,1993,28(4):535-551.
[10] Floros C,Vougas D V.Hedge ratios in Greek stock index futures market[J].Applied Financial Economics,2004,14(15):1125-1136.
[11] Byström H N E.The hedging performance of electricity futures on the Nordic power exchange[J].Applied Economics,2003,35(1):1-11.
[12] Lien D.Cointegration and the optimal hedge ratio:the general case[J].The Quarterly Review of Economics and Finance,2004,44(5):654-658.
[13] Lien D,Tse Y K,Tsui A K C.Evaluating the hedging performance of the constant-correlation GARCH model[J].Applied Financial Economics,2002,12(11):791-798.
[14] Bollerslev T.Modelling the coherence in short-run nominal exchange rates:a multivariate generalized ARCH model[J].The Review of Economics and Statistics,1990,72(3):498-505.
[15] Tse Y K,Tsui A K C.A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations[J].Journal of Business and Economic Statistics,2002,20(3):351-362.
[16] Engle R.Dynamic conditional correlation:a simple class of multivariate generalized autoregressive conditional heteroskedasticity models[J].Journal of Business and Economic Statistics,2002,20(3):339-350.
[17] Cappiello L,Engle R F,Sheppard K.Asymmetric dynamics in the correlations of global equity and bond returns[J].Journal of Financial Econometrics,2006,4(4):537-572.
[18] Alexander C O.Orthogonal GARCH[J].Mastering Risk,2001,2:21-38.
[19] van der Weide R.Go-GARCH:a multivariate generalized orthogonal GARCH model[J].Journal of Applied Econometrics,2002,17(5):549-564.
[20] Basher S A,Sadorsky P.Hedging emerging market stock prices with oil,gold,VIX,and bonds:a comparison between DCC,ADCC and GO-GARCH[J].Energy Economics,2016,54:235-247.
[21] Pan Zhiyuan,Wang Yudong,Yang Li.Hedging crude oil using refined product:a regime switching asymmetric DCC approach[J].Energy Economics,2014,46:472-484.
[22] Ubukata M,Watanabe T.Evaluating the performance of futures hedging using multivariate realized volatility[J].Journal of the Japanese and International Economies,2015,38:148-171.
[23] Augustyniak M,Godin F,Simard C.Assessing the effectiveness of local and global quadratic hedging under GARCH models[J].Quantitative Finance,2017,17(9):1305-1318.
[24] Billio M,Casarin R,Osuntuyi A.Markov switching GARCH models for Bayesian hedging on energy futures markets[J].Energy Economics,2018,70:545-562.
[25] Yan Zhipeng,Li Shenghong.Hedge ratio on Markov regime-switching diagonal Bekk-Garch model[J].Finance Research Letters,2018,24:49-55.
[26] Alizadeh A H,Huang Chih Yueh,van Dellen S.A regime switching approach for hedging tanker shipping freight rates[J].Energy Economics,2015,49:44-59.
[27] Philip D,Shi Yukun.Optimal hedging in carbon emission markets using Markov regime switching models[J].Journal of International Financial Markets,Institutions and Money,2016,43:1-15.
[28] Iqbal J.Does gold hedge stock market,inflation and exchange rate risks?an econometric investigation[J].International Review of Economics and Finance,2017,48:1-17.
[29] Raza N,Ali S,Shahzad S J H,et al.Do commodities effectively hedge real estate risk?a multi-scale asymmetric DCC approach[J].Resources Policy,2018,57:10-29.
[30] 刘志东,薛莉.金融市场高维波动率的扩展广义正交 GARCH 模型与参数估计方法研究[J].中国管理科学,2010,18(6):33-41.
[31] Hou Yang,Li Steven.Hedging performance of Chinese stock index futures:an empirical analysis using wavelet analysis and flexible bivariate GARCH approaches[J].Pacific-Basin Finance Journal,2013,24:109-131.
[32] Bessler W,Leonhardt A,Wolff D.Analyzing hedging strategies for fixed income portfolios:a Bayesian approach for model selection[J].International Review of Financial Analysis,2016,46:239-256.
[33] Chang Chia Lin,Chen Li Hsueh,Hammoudeh S M,et al.Asymmetric adjustments in the ethanol and grains markets[J].Energy Economics,2012,34(6):1990-2002.
[34] 彭红枫,叶永刚.基于修正的ECM-GARCH模型的动态最优套期保值比率估计及比较研究[J].中国管理科学,2007,15(5):29-35.
[35] 佟孟华.沪深 300 股指期货动态套期保值比率模型估计及比较:基于修正的ECM-BGARCH(1,1)模型的实证研究[J].数量经济技术经济研究,2011,28(4):137-149.
[36] 王辉,孙志凌,谢幽篁.中国农产品期货套期保值非对称效应研究[J].统计研究,2012,29(7):68-74.
[37] 彭红枫,陈奕.中国铜期货市场最优套期保值比率估计:基于马尔科夫区制转移GARCH模型[J].中国管理科学,2015,23(5):14-22.
[38] 梁斌,陈敏,缪柏其,等.我国股指期货的套期保值比率研究[J].数理统计与管理,2009,28(1):143-151.
[39] 邓鸣茂.股指期货动态套期保值率研究:基于DCC-MVGARCH模型[J].国际商务研究,2011,32(3):52-57.
[40] 付剑茹,张宗成.模型的复杂性与期货套期保值效率:基于环境突变样本区间的检验[J].管理工程学报,2014,28(4):146-151.
[41] Mohamed E H A,Lahiani A,Nguyen D K.World gold prices and stock returns in China:insights for hedging and diversification strategies[J].Economic Modelling,2015,44:273-282.
[42] Bouri E,Molnár P,Azzi G,et al.On the hedge and safe haven properties of Bitcoin:is it really more than a diversifier?[J].Finance Research Letters,2017,20:192-198.

备注/Memo

备注/Memo:
收稿日期:2018-10-10 基金项目:国家自然科学基金(71261010,71661014),江西省教育厅科技课题(GJJ14724)和江西省研究生创新基金(YC2016-S125)资助项目. 作者简介:付剑茹(1974-),男,江西高安人,教授,博士,博士生导师,主要从事金融计量和金融工程研究.E-mail:491524001@qq.com
更新日期/Last Update: 2019-04-10