[1]吴丽芬,姚卫棠*.超长ZnSe纳米线的制备及其光学性能研究[J].江西师范大学学报(自然科学版),2019,(03):237-242+247.[doi:10.16357/j.cnki.issn1000-5862.2019.03.04]
 WU Lifen,YAO Weitang*.The Study on Preparation and Optical Properties of Ultralong ZnSe Nanowires[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(03):237-242+247.[doi:10.16357/j.cnki.issn1000-5862.2019.03.04]
点击复制

超长ZnSe纳米线的制备及其光学性能研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
237-242+247
栏目:
化学与生命科学
出版日期:
2019-06-10

文章信息/Info

Title:
The Study on Preparation and Optical Properties of Ultralong ZnSe Nanowires
文章编号:
1000-5862(2019)03-0237-06
作者:
吴丽芬姚卫棠*
西南科技大学国防科技学院,四川 绵阳 621010
Author(s):
WU LifenYAO Weitang*
School of National Defense Science and Technology,Southwest University of Science and Technology,Mianyang Sichuang 621010,China
关键词:
ZnSe纳米线 混合溶剂 光学性质
Keywords:
ZnSe nanowires mixed solution optical properties
分类号:
O 611.4
DOI:
10.16357/j.cnki.issn1000-5862.2019.03.04
文献标志码:
A
摘要:
利用2元混合溶剂(CHA/DIW)合成体系,制备了立方相具有周期性结构的孪晶ZnSe纳米线.所有纳米线都向一个方向生长,即垂直于立方相ZnSe的(111).结果表明:利用水/胺2元混合溶液可制得各种复杂形貌的半导体材料,这种2元体系可控制合成不同的硫属半导体纳米材料,也为制备其它具有光学性能可调的半导体纳米晶提供了一条普适的合成路线.
Abstract:
Twin-related cubic ZnSe nanostructures with periodically have been produced via a facile solvothermal approach in a mixed solution made up of cyclohexylamine(CHA)and deionized water(DIW).All of the nanowires grow along a universal direction,which is perpendicular to the closest packed planes of ZnSe,i.e.,(111)planes in the case of cubic ZnSe.The results demonstrate that solvothermal reaction in a mixed amine/water can access a variety of complex morphologies of semiconductor materials.This approach can provide an effective strategy for tuning semiconductor electronic and optical properties with special advantages over traditional high-temperature approach,and could be extended to access other semiconductor nanomaterials with unusual morphologies and structural speciality.

参考文献/References:

[1] Guria A K,Sarkar S,Patra B K,et al.Efficient superionic conductor catalyst for solid in solution-solid-solid growth of heteronanowires[J].Journal of Physical Chemistry Letters,2014,5(4):732-736.
[2] He Zhen,Yang Yuan,Liu Jianwei,et al.Emerging tellurium nanostructures:controllable synthesis and theirapplications[J].Chemical Society Reviews,2017,46(10):2732-2753.
[3] Li Dong,Xing Guanjie,Tang Shilin,et al.Ultrathin ZnSe nanowires:one-pot synthesis via a heat-triggered precursor slow releasing route,controllable Mn doping and application in UV and near-visible light detection[J].Nanoscale,2017,9(39):15044-15055.
[4] Min Yuho,Moon Geon Dae Kim,Chang Eun,et al.Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications[J].Journal of Materials Chemistry C,2014,2(31):6222-6248.
[5] Panda Debashis,Tseng Tseung Yuen.One-dimensional ZnO nanostructures:fabrication,optoelectronic properties,and device applications[J].Journal of Materials Science,2013,48(20):6849-6877.
[6] Jia Guohua,Xu Shiqing,Wang Aixiang.Emerging strategies for the synthesis ofmonodisperse colloidal semiconductor quantum rods[J].Journal of Materials Chemistry C,2015,3(32):8284-8293.
[7] Jia Guohua,Banin Uri.A general strategy for synthesizing colloidal semiconductor Zinc chalcogenide quantum rods[J].Journal of the American Chemical Society,2014,136(31):11121-11127.
[8] Wang Fudong,Buhro,William E.Role of precursor-conversion chemistry in the crystal-phase control of catalytically grown colloidal semiconductor quantum wires[J].Acs Nano,2017,11(12):12526-12535.
[9] Hu Shi,Wang Xun.Ultrathin nanostructures:smaller size with new phenomena[J].Chemical Society Reviews,2013,42(12):5577-5594.
[10] Kenry,Lim Chwee Teck.Synthesis,optical properties,and chemical-biological sensing applications of one-dimensional inorganic semiconductor nanowires[J].Progress in Materials Science,2013,58(5):705-748.
[11] Wang Junli,Chen Kangmin,Gong Ming,et al.Solution-solid-solid mechanism:superionic conductors catalyze nanowire growth[J].Nano Letters,2013,13(9):3996-4000.
[12] Wang Junli,Qiao Yajie,Wang Tingting,et al.Catalyst/surfactant co-assisted colloidal synthesis and optical properties of ultrathin/ultralong ZnSe nanowires[J].Journal of Crystal Growth,2019,509:54-59.
[13] Gong Hua,Huang Hui,ang Minqiang,et al.Characterization and growth mechanism of ZnSe microspheres prepared by hydrothermal synthesis[J].Ceramics International,2007,33(7):1381-1384.
[14] Huang Zhipeng,Pan Lei,Zhong Peng,et al.Facile low-temperature synthesis of ultralong monodisperse ZnSe quantum wires with the assistance of Ag2S[J].Chemistry-a European Journal,2013,19(5):1732-1739.
[15] Xue Songlin,Wu Shengxie,Zeng Qianzhi,et al.Synthesis,field emission properties and optical properties of ZnSe nanoflowers[J].Applied Surface Science,2016,365:69-75.
[16] Yang Congming,Wang Junli,You Tingting,et al.Long ZnSe nanowires by a seed-catalytic solution synthesis[J].Materials Letters,2012,80:29-32.
[17] Wang Tingting,Wang Junli,Qiao Yajie,et al.Intrinsic lattice relationship of catalyst/nanowire interfaces by heating high-resolution transmission electron microscopy[J].Crystal Growth and Design,2018,18(9):4911-4919.
[18] Wang Fudong,Dong Angang,Buhro William E.Solution-liquid-solid synthesis,properties,and applications of one-dimensional colloidal semiconductor nanorods and nanowires[J].Chemical Reviews,2016,116(18):10888-10933.

备注/Memo

备注/Memo:
收稿日期:2019-01-26
基金项目:国家自然科学基金(21671160)资助项目.
通信作者:姚卫棠(1975-),男,安徽铜陵人,教授,主要从事无机材料合成研究.E-mail:wtyao@ustc.edu.cn
更新日期/Last Update: 2019-06-10