[1]徐洪富,吴根秀*,许 才.基于大焦元的子焦元的信任函数逼近方法[J].江西师范大学学报(自然科学版),2019,(03):282-286+308.[doi:10.16357/j.cnki.issn1000-5862.2019.03.11]
 XU Hongfu,WU Genxiu*,XU Cai.The Approximation Method of the Belief Function Based on the Sub Focal Elements of the Large Focal Elements[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(03):282-286+308.[doi:10.16357/j.cnki.issn1000-5862.2019.03.11]
点击复制

基于大焦元的子焦元的信任函数逼近方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
282-286+308
栏目:
数学与应用数学
出版日期:
2019-06-10

文章信息/Info

Title:
The Approximation Method of the Belief Function Based on the Sub Focal Elements of the Large Focal Elements
文章编号:
1000-5862(2019)03-0282-05
作者:
徐洪富吴根秀*许 才
江西师范大学数学与信息科学学院,江西 南昌 330022
Author(s):
XU HongfuWU Genxiu*XU Cai
College of Mathematics and Information Science,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
证据理论 概率理论 信任函数
Keywords:
evidence theory probability theory belief function
分类号:
O 236; TP 18
DOI:
10.16357/j.cnki.issn1000-5862.2019.03.11
文献标志码:
A
摘要:
对于证据合成过程中焦元数目过多导致计算量较大的问题,该文给出了一种综合考虑焦元的基数大小和信任值大小的信任函数逼近方法,该方法可以控制焦元数目、加快运算速度,通过算例分析验证了结论的有效性.
Abstract:
For the problem that the number of focal elements is too much in the process of evidence synthesis so as to have large computational complexity,a belief function approximation method considering the size of the cardinal number and the belief value of focal elements is presented.This method can control the number of focal elements and speed up the calculation.The validity of the conclusion is verified by the analysis of examples.

参考文献/References:

[1] Shafer G.A mathematical theory of evidence[M].Princeton:Princeton University Press,1976.
[2] Dubois D,Prade H.Consonant approximations of belief functions[J].International Journal of Approximate Reasoning,1990,4(5):419-449.
[3] Bauer M.Approximation algorithms and decision making in the Dempster-Shafer theory of evidence:an empirical study[J].International Journal of Approximate Reasoning,1997,17(2):217-237.
[4] Bauer M.Approximations for decision making in the Dempster-Shafer theory of evidence[C]//In Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1996:73-80.
[5] Tessem B.Approximations for efficient computation in the theory of evidence[J].Artificial Intelligence,1993,61(2):315-329.
[6] Lowrance J D,Garvey T D,Strat T M.A framework for evidential-reasoning systems[C]//Proceedings of the Fifth National Conference on Artificial Intelligence,Haarlem:Elsevier-North Holland Publishers,1986:896-903.
[7] Smets P.Belief functions versus probability functions[M]//Saitta L,Bouchon B,Yager R,ed.Berlin:Springer-Verlag,1988:17-24.
[8] Smets P.Decision making in the TBM:the necessity of the pignistic transformation[J].Approximate Reasoning,2005,38(2):133-147.
[9] Cobb B R,Shenoy P P.On transforming belief function models to probability models[R].Working Paper 293,University of Kansas School of Business,2003.
[10] Cobb B R,Shenoy P P.A comparison of Bayesian and belief function reasoning[J].Information Systems Frontiers,2003,5(4):345-358.
[11] Cobb B R,Shenoy P P.A comparison of methods for transforming belief function models to probability models[J].Lecture Notes in Computer Science,2003,2711:255-266.
[12] Cuzzolin F.Two new Bayesian approximations of belief functions based on convex geometry[J].Transactions on Systems,Man,and Cybernetics(B):Cybernetics,2007,37(4):993-1008.
[13] Cuzzolin F.Lp consonant approximations of belief functions[J].Transactions on Fuzzy Systems,2014,22(2):420-436.
[14] 程子成,吴根秀,宋姝婷.基于融合信息熵性质的信任函数概率逼近[J].江西师范大学学报:自然科学版,2014,38(5):534-538.
[15] 黄梅,吴根秀,刘邱云,等.一种基于大焦元分解的信任函数逼近方法[J].江西师范大学学报:自然科学版,2016,40(3):285-289.
[16] Harmanec D.Faithful approximations of belief functions[C]//UAI'99 Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,San Francisco:Morgan Kaufmann Publishers,1999:271-278.
[17] Voorbraak F.A computationally efficient approximation of Dempster-Shafer theory[J].International Journal of Man-Machine Studies,1989,30(5):525-536.
[18] Sarabi-Jamab A,Araabi B N.Information-based evaluation of approximation methods in Dempster-Shafer theory[J].International Journal of Uncertainty Fuzziness and Knowledge-Based Systems,2016,24(4):503-535.

相似文献/References:

[1]涂青,吴根秀,刘邱云.证据组合新方法及其在诗歌评价中的应用[J].江西师范大学学报(自然科学版),2013,(06):641.
 TU Qing,WU Gen-xiu,LIU Qiu-yun.The New Method of Evidence Combination and Its Application in Poetry Evaluation[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(03):641.

备注/Memo

备注/Memo:
收稿日期:2018-12-20
基金项目:国家自然科学基金(61462045)和江西省学位与研究生教育教学改革研究(JXYJG-2015-034)资助项目.
通信作者:吴根秀(1965-),女,江西南丰人,教授,主要从事不确定性推理与信息融合的研究.E-mail:wgx_nc@sina.com
更新日期/Last Update: 2019-06-10