[1]安志伟,周 行*.基底材料对嵌入型Fe3O4纳米颗粒的应变场影响[J].江西师范大学学报(自然科学版),2019,(03):287-293.[doi:10.16357/j.cnki.issn1000-5862.2019.03.12]
 AN Zhiwei,ZHOU Hang*.The Effect of Substrate Material on the Strain Field of Embedded Fe3O4 Nanoparticles[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(03):287-293.[doi:10.16357/j.cnki.issn1000-5862.2019.03.12]
点击复制

基底材料对嵌入型Fe3O4纳米颗粒的应变场影响()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
287-293
栏目:
物理学
出版日期:
2019-06-10

文章信息/Info

Title:
The Effect of Substrate Material on the Strain Field of Embedded Fe3O4 Nanoparticles
文章编号:
1000-5862(2019)03-0287-07
作者:
安志伟周 行*
江西师范大学物理与通信电子学院,江西 南昌 330022
Author(s):
AN ZhiweiZHOU Hang*
College of Physics and Communication Electronics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
Fe3O4纳米颗粒 应变 有限元算法 薄膜
Keywords:
Fe3O4 nanoparticle strain finite element calculations thin films
分类号:
O 469
DOI:
10.16357/j.cnki.issn1000-5862.2019.03.12
文献标志码:
A
摘要:
埋嵌型纳米颗粒在生长的过程中会受到周围基质材料对其施加的应力作用,应力的大小不仅会对纳米颗粒的晶格结构和物理性能产生影响,还与纳米颗粒的尺寸大小息息相关.因此,研究埋嵌在不同薄膜材料中的纳米颗粒生长过程中的应变场分布对于调控纳米颗粒的物理性能有着重要的意义.该文利用脉冲激光沉积和快速退火技术成功地制备了分别镶嵌在非晶氧化铝薄膜、非晶氧化镥薄膜和非晶二氧化硅薄膜中的Fe3O4纳米颗粒,并利用透射电子显微镜观察这些球形纳米颗粒.为了研究纳米颗粒的尺寸与应力大小之间的关系,采用有限元算法分别模拟仿真了这些纳米颗粒的应变场分布,并对结果进行了系统的分析.研究发现:Fe3O4纳米颗粒在不同薄膜材料生长过程中均受到非均匀偏应变作用,而且纳米颗粒的尺寸及应变场分布与纳米颗粒周围基质材料的杨氏模量和泊松比密切相关.在不同基质材料中生长的纳米颗粒所受到的应变场分布也有所不同,这为调控纳米颗粒的晶格结构和形貌以及物理性能提供了一个新思路.
Abstract:
Embedded nanoparticles will be subjected to the stress imposed by surrounding matrix materials during their growth.The stress of nanoparticles is not only affect the lattice structure and physical properties of nanoparticles,but also closely related to the size of nanoparticles.So it is fundamentally nessary to study the strain distribution of nanoparticles embedded in different thin films.Fe3O4 nanoparticles embedded in the amorphous Al2O3,Lu2O3 and SiO2 matrix are fabricated by using pulsed laser deposition and rapid thermal annealing,respectively.The results from transmission electron microscope also reveal that the complete isolation of Fe3O4 nanoparticles embedded in amorphous these matrixs.In order to study the relationship between the size of nanoparticles and the size of stress,the strain field distribution of these nanoparticles is simulated by finite element method,and the results are analyzed systematically.Finite element calculations clearly indicate that the Fe3O4 nanoparticle incurs a net deviatoric strain.The size and strain field distribution of nanoparticles are closely related to Young's modulus and poisson's ratio of the materials around nanoparticles.The strain field distribution of nanoparticles grown in different matrix materials is also different,which provides a new idea for regulating the lattice structure,morphology and physical properties of nanoparticles.

参考文献/References:

[1] Fujii M,Inoue Y,Hayashi S,et al.Hopping conduction in SiO2 films containing C,Si,and Ge clusters[J].Applied Physics Letters,1996,68(26):3749-3751.
[2] Franzo G,Irrera A,Moreira E C,et al.Electroluminescence of silicon nanocrystals in MOS structures[J].Applied Physics A Mater Sci Process,2002,74(1):1-5.
[3] Yuan Cailei,Cai Hui,Lee P S,et al.Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain[J].The Journal of Physical Chemistry C,2009,113(46):19863-19866.
[4] Chikazumi S,Taketomi S,Ukita M,et al.Physics of magnetic fluids[J].J Magn Magn Mater,1987,65(2/3):245-251.
[5] Lu Anhui,Schmidt W,Matoussevitch N,et al.Nanoengineering of a magnetically separable hydrogenation catalyst[J].Angewandte Chemie International Edition,2004,35(43):4303-4306.
[6] Li Zhen,Li Wei,Gao Mingyuan,et al.One-pot reaction to synthesize biocompatible magnetite nanoparticles[J].Adv Mater,2005,17(8):1001-1005.
[7] Lin Pochiao,Yu Chingching,Wu Huanting,et al.A chemically functionalized magnetic nanoplatform for rapid and specific biomolecular recognition and separation[J].Biomacromolecules,2013,14(1):160-168.
[8] Nor Aida Zubir,Christelle Yacou,Julius Motuzas,et al.Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction[EB/OL].[2018-10-13].https://www.nature.com/articles/srep04594.
[9] Gye Seok An,Jin Soon Han,Jae Rok Shin,et al.In situ synthesis of Fe3O4@SiO2 core-shell nanoparticles via surface treatment[J].Ceramics International,2018,44(1):12233-12237.
[10] Choi W K,Ng V,Ng S P,et al.Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing[J].Journal of Applied Physics,1999,86(3):1398-1403.
[11] Wellner A,Paillard V,Bonafos C,et al.Stress measurements of germanium nanocrystals embedded in silicon oxide[J].Journal of Applied Physics,2003,94(9):5639-5642.
[12] Chew H G,Zheng Feihu,Choi W K,et al.Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix[J].Nanotechnology,2007,18(6):065302.
[13] Ren Wei,Yang Yurong,Diéguez O,et al.Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains[J].Physical Review Letters,2013,110(18):187601.
[14] Jin Zuanming,Xu Yue,Zhang Zhengbing,et al.Strain modulated transient photostriction in La and Nb codoped multiferroic BiFeO3 thin films[J].Applied Physics Letters,2012,101(24):242902.
[15] Liu G R,Dai K Y,Nguyen-Thoi T.A smoothed finite element method for mechanics problems[J].Computational Mechanics,2007,39(6):859-877.
[16] Valery I L,Alexander V I,Ameeth K P.Phase-field modeling of fracture in liquid[J].Journal of Applied Physics,2011,110(3):033531.
[17] Jiang Zixiong,Zhang Qiulong,Yuan Cailei.Simulation of strain distribution of GaAs nanoparticles with growth in different environment[J].Acta Photonica Sinica,2013,42(2):186-190.
[18] Barettin D,Madsen S,Lassern B,et al.Comparison of wurtzite atomistic and piezoelectric continuum strain models:Implications for the electronic band structure[J].Superlattices Microstruct,2010,47(1):134-138.
[19] Zhang Qiulong,Jiang Zixiong,Yuan Cailei,et al.Strain distribution of Ni nanoparticles embedded in Al2O3 ultrathin film[J].Scientia Sinica Physica,2012,42(7):711-715.
[20] Benabbas T,Androussi Y,Lefebvre A.A finite-element study of strain fields in vertically aligned InAs islands in GaAs[J].Journal of Applied Physics,1999,86(4):1945-1950.
[21] Pei Qingxiang,Lu Chen,Wang Y Y.Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots[J].Journal of Applied Physics,2003,93(3):1487-1492.
[22] Shin H,Lee W,Yoo Y H.Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods[J].Journal of Physics Condensed Matter,2003,15(22):3689.
[23] Yuan Cailei,Jiang Zixiong,Ye Shuangli.Strain-induced matrix-dependent deformation of GaAs nanoparticles[J].Nanoscale,2014,6(2):1119-1123.
[24] Yuan Cailei,Ye Shuangli,Xu Bo,et al.Strain induced tetragonal SrTiO3 nanoparticles at room temperature[J].Applied Physics Letters,2012,101(7):071909.
[25] Yuan Cailei,Lee Pooi See,Ye Shuangli.Formation, photoluminescence and charge storage characteristics of Au nanocrystals embedded in amorphous Al2O3 matrix[J].Europhysics Letters,2007,80(6):67003.
[26] Hofmeister H,Dubiel M,Goj H,et al.Microstructural investigation of colloidal silver embedded in glass[J].Journal of Microscopy,1995,177(3):331-336.
[27] Voronkov V V,Falster R.Strain-induced transformation of amorphous spherical precipitates into platelets:application to oxide particles in silicon[J].Journal of Applied Physics,2001,89(11):5965-5971.
[28] Wu Runsheng,Luo Xingfang,Yuan Cailei,et al.Dielectric matrix imposed stress/strain effect on photoluminescence of Ge nanocrystals[J].Solid State Communications,2009,149(15/16):598-601.

相似文献/References:

[1]吴亚俊,周 行*.基底材料对MoS2的应变场影响[J].江西师范大学学报(自然科学版),2019,(04):388.[doi:10.16357/j.cnki.issn1000-5862.2019.04.10]
 WU Yajun,ZHOU Hang*.The Effect of Substrate Material on Strain Field of MoS2[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(03):388.[doi:10.16357/j.cnki.issn1000-5862.2019.04.10]

备注/Memo

备注/Memo:
收稿日期:2019-01-22
基金项目:国家自然科学基金(51761017,51661012,51461019)资助项目.
通信作者:周 行(1988-),男,江西南昌人,博士,主要从事纳米材料研究.E-mail:408958049@qq.com
更新日期/Last Update: 2019-06-10