[1]吴亚俊,周 行*.基底材料对MoS2的应变场影响[J].江西师范大学学报(自然科学版),2019,(04):388-393.[doi:10.16357/j.cnki.issn1000-5862.2019.04.10]
 WU Yajun,ZHOU Hang*.The Effect of Substrate Material on Strain Field of MoS2[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(04):388-393.[doi:10.16357/j.cnki.issn1000-5862.2019.04.10]
点击复制

基底材料对MoS2的应变场影响()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
388-393
栏目:
物理学
出版日期:
2019-08-10

文章信息/Info

Title:
The Effect of Substrate Material on Strain Field of MoS2
文章编号:
1000-5862(2019)04-0388-06
作者:
吴亚俊1周 行12*
1.江西师范大学物理与通信电子学院,江西 南昌 330022; 2.江西师范大学微纳材料与传感器件重点实验室,江西 南昌 330022
Author(s):
WU Yajun1ZHOU Hang12*
1.College of Physics and Communication Electronics,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Laboratory of Micro Nano Materials and Sensors,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
基底 MoS2 杨氏模量 泊松比 应变 有限元
Keywords:
base MoS2 Young's modulus Poisson's ratio strain finite element method
分类号:
O 469
DOI:
10.16357/j.cnki.issn1000-5862.2019.04.10
文献标志码:
A
摘要:
利用有限元法分析对生长在Au、Cu、Al2O3、SiO2、Ni这5种不同基底上的层状MoS2的应变分布进行模拟仿真.研究结果表明:基底材料的泊松比不同会使得基底和MoS2的y方向形变都不相同; 基底的杨氏模量不同会使得不同基底底部与二硫化钼(MoS2)顶部的应变差别不同.在膨胀过程中,y方向底端的拉伸应变大于中间的拉伸应变,这会导致基底与顶端应变高于中间的应变.因此,基底材料的杨氏模量和泊松比与MoS2的应变分布密切相关.根据仿真结果可得,由于MoS2在Au和SiO2基底上所受到的应变较小,导致MoS2的顶端和基底底部应变差较大,因此容易造成剥离脱落; 而在Al2O3基底上,由于基底材料具有较高的杨氏模量,且与MoS2比较接近,所以MoS2顶端和基底底部呈现的应变差接近.由此可见,在这些材料当中,Al2O3更适合作为MoS2的基底材料.通过研究基底材料的应变场分布,能更好地对纳米材料进行调控,从而改善器件的相关性能.
Abstract:
The strain distribution of layered MoS2 grown on Au,Cu,Al2O3,SiO2 and Ni was simulated by finite element method.The results show that the deformation of base and MoS2 in y direction is different due to different Poisson's ratio of base materials.Due to different Young's modulus of the base,the strain difference between the base bottom and the top of molybdenum disulfide is different.In the expansion process,the tensile strain at the bottom of the y direction is greater than the tensile strain at the middle,which will cause the strain at the base and the top to be higher than that at the middle.Therefore,Young's modulus and Poisson's ratio of base material are closely related to the strain distribution of MoS2.According to the simulation results,the strain of MoS2 on the substrate of Au and SiO2 is small.the strain difference between the top of MoS2 and the bottom of the substrate is large,so it was easy for MoS2 to be peeled off.On the substrate of Al2O3,the substrate material has a high Young's modulus which is close to MoS2.The strain difference from the top of MoS2 is similar than the bottom of the substrate.Therefore,among these materials,Al2O3 is more suitable for MoS2 substrate material.By studying the strain field distribution of the substrate material,the nano materials can be better regulated and the related properties of the device can be improved.

参考文献/References:

[1] 何学侠,刘富才,曾庆圣,等.2维材料双电层场晶体管的研究[J].化学学报,2015,73(9):924-935.
[2] 张旭.大面积石墨烯及其透明导电膜的制备与性能研究[D].兰州:兰州交通大学,2013.
[3] Radisavljevic B,Radenovic A,Brivio J,et al.Single-layer MoS2 transistors[J].Nature Nanotechnology,2011,6(3):147-150.
[4] Coleman J N,Lotya M,O'Neill A,et al.Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J].Science,2011,331(6017):568-571.
[5] Radisavljevic B,Radenovic A,Brivio J,et al.Single-layer MoS2 transistors[J].Nature Nanotechnology,2011,6(3):147.
[6] Zhang Xian,Sun Dezheng,Li Yilei,et al.Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique[J].ACS Applied Materials and Interfaces,2015,7(46):25923-25929.
[7] Gourmelon E,Lignier O,Hadouda H,et al.MS2(M=W,Mo)photosensitive thin films for solar cells[J].Solar Energy Materials and Solar Cells,1997,46(2):115-121.
[8] Yin Zongyou,Li Hai,Li Hong,et al.Single-layer MoS2 phototransistors[J].ACS Nano,2011,6(1):74-80.
[9] Wang Qinghua,Kalantar-Zadeh K,Kis A,et al.Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J].Nature Nanotechnology,2012,7(11):699.
[10] Hee Sung Lee,Sung-Wook Min,Youn-Gyung Chang,et al.MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J].Nano Letters,2012,12(7):3695-3700.
[11] Choi W,Cho M Y,Konar A,et al.High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J].Advanced Materials,2012,24(43):5832-5836.
[12] Voiry D,Yamaguchi H,Li Junwen,et al.Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J].Nature Materials,2013,12(9):850.
[13] Li Yanguang,Wang Hailiang,Xie Liming,et al.MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction[J].Journal of the American Chemical Society,2011,133(19):7296-7299.
[14] Li Dongjun,Maiti U N,Lim J,et al.Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J].Nano Letters,2014,14(3):1228-1233.
[15] Yan Ya,Ge Xiaoming,Liu Zhaolin,et al.Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J].Nanoscale,2013,5(17):7768-7771.
[16] Zeng Zhiyuan,Tan Chaoliang,Huang Xiao,et al.Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction[J].Energy and Environmental Science,2014,7(2):797-803.
[17] Tan Yongwen,Liu Pan,Chen Luyang,et al.Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production[J].Advanced Materials,2014,26(47):8023-8028.
[18] Yang Ya,Fei Huilong,Ruan Gedeng,et al.Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J].Advanced Materials,2014,26(48):8163-8168.
[19] Shi Jianping,Ma Donglin,Han Gaofeng,et al.Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction[J].ACS Nano,2014,8(10):10196-10204.
[20] Ponraj J S,Buffagni E,Deivasigamani G,et al.Studies of nanoindentation and residual stress analysis of Ge/GaAs epilayers[J].Semiconductor Science & Technology,2015,30(5):55004.
[21] Jin Zuanming,Xu Yue,Zhang Zhengbing,et al.Strain modulated transient photostriction in La and Nb codoped multiferroic BiFeO3 thin films[J].Applied Physics Letters,2012,101(24):242902.
[22] Ren Wei,Yang Yurong,Diéguez O,et al.Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains[J].Physical Review Letters,2013,110(18):187601.
[23] Zingales M,Failla G.The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors[J].Communications in Nonlinear Science and Numerical Simulation,2015,29(1/2/3):116-127.
[24] Liu G R,Dai K Y,Nguyen T T.A smoothed finite element method for mechanics problems[J].Computational Mechanics,2007,39(6):859-877.
[25] Levitas V I,Idesman A V,Palakala A K.Phase-field modeling of fracture in liquid[J].Journal of Applied Physics,2011,110(3):33531.
[26] 江子雄,张求龙,袁彩雷.不同生长环境下砷化镓纳米颗粒的应变场模拟[J].光子学报,2013,42(2):186-190.
[27] Barettin D,Madsen S,Lassen B,et al.Comparison of wurtzite atomistic and piezoelectric continuum strain models:implications for the electronic band structure[J].Superlattices and Microstructures,2010,47(1):134-138.
[28] Yuan Cailei,Jiang Zixiong,Ye Shuangli.Strain-induced matrix-dependent deformation of GaAs nanoparticles[J].Nanoscale,2014,6(2):1119-1123.
[29] Yuan Cailei,Cai Hui,Lee Pooi See,et al.Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain[J].The Journal of Physical Chemistry C,2009,113(46):19863-19866.
[30] Yuan Cailei,Ye Shuangli,Xu Bo,et al.Strain induced tetragonal SrTiO3 nanoparticles at room temperature[J].Applied Physics Letters,2012,101(7):71909.
[31] Benabbas T,Androussi Y,Lefebvre A.A finite-element study of strain fields in vertically aligned InAs islands in GaAs[J].J Appl Phys,1999,86(4):1945.
[32] Pei Qingxiang,Lu Chen,Wang Y Y.Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots[J].J Appl Phys,2003,93(3):1487-1492.
[33] Shin H,Lee W,Yoo Y H.Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods[J].J Phys Condens Matter,2003,15:3689.

备注/Memo

备注/Memo:
收稿日期:2018-11-16
基金项目:国家自然科学基金(51761017,51661012,51461019)资助项目.
通信作者:周 行(1988-),男,江西南昌人,博士,主要从事纳米材料研究.E-mail:408958049@qq.com
更新日期/Last Update: 2019-08-10