[1]黄俊滔,饶志明,谢芳森*.基于级联差频GaAs微腔产生太赫兹的研究[J].江西师范大学学报(自然科学版),2019,(05):478-483.[doi:10.16357/j.cnki.issn1000-5862.2019.05.07]
 HUANG Juntao,RAO Zhiming,XIE Fangsen*.The Terahertz Generation Using a Cavity Phase-Matched GaAs Based on Cascaded Difference-Frequency[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(05):478-483.[doi:10.16357/j.cnki.issn1000-5862.2019.05.07]
点击复制

基于级联差频GaAs微腔产生太赫兹的研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
478-483
栏目:
出版日期:
2019-10-10

文章信息/Info

Title:
The Terahertz Generation Using a Cavity Phase-Matched GaAs Based on Cascaded Difference-Frequency
文章编号:
1000-5862(2019)05-0478-06
作者:
黄俊滔饶志明谢芳森*
江西师范大学物理与通信电子学院,江西 南昌 330022
Author(s):
HUANG JuntaoRAO ZhimingXIE Fangsen*
College of Physics and Communication Electronics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
级联过程 差频 太赫兹 GaAs 腔相位匹配 太赫兹功率
Keywords:
cascaded process difference-frequency terahertz GaAs cavity phase-matched terahertz power
分类号:
O 441
DOI:
10.16357/j.cnki.issn1000-5862.2019.05.07
文献标志码:
A
摘要:
以周期性极化GaAs为例,通过对3波耦合方程的分析,计算GaAs的有效非线性系数与2阶非线性系数比值、极化周期、品质因子及太赫兹功率.研究结果显示:在GaAs微腔中,有效非线性系数比值在0~1变化,最大有效非线性系数比值趋近于1,极化周期长而变化范围小,品质因子高(高Q值),存储能量大.随着有效非线性系数、较小范围内的极化周期以及品质因子的增大,太赫兹功率(强度)、效率随之显著增大.腔相位匹配补偿级联差频的失配,基于10阶级联差频GaAs微腔产生峰值功率0.267 4 MW,增大3.96倍,进一步说明基于级联差频GaAs微腔有助于产生太赫兹辐射、吸收是太赫兹源的主要影响因素之一.比较研究基于级联差频GaAs微腔与准相位匹配级联差频,前者具有更好输出特性,研究结果对基于级联差频GaAs微腔产生太赫兹具有参考价值.
Abstract:
The characteristics of cascaded difference-frequency generation(DFG)using a cavity phase-matched(CPM)GaAs,such as the ratio of effective nonlinear coefficient to second-order nonlinear coefficient,the polarization period,the quality factor and THz power,is calculated from the couple wave equations.The results show that the ratio of effective nonlinear coefficient to second-order nonlinear coefficient change from 0 to 1,the maximal ratio of effective nonlinear coefficient to second-order nonlinear coefficient becomes 1 in a cavity phase-matched GaAs.The polarization period is long and the range of GaAs crystal is small.The quality factor and the energy stored in the cavity are high.THz power(THz intensity)and the conversion efficiency significantly increase with the effective nonlinear coefficient,the polarization period within small range,and the quality factor.The flake optical micro-cavity to be utilized to compensate the phase mismatch,the peak power in CPM cascaded DFG processes up to 0.267 4 MW in 10-order cascading processes,THz power increases to 3.96 times,which further proves that the cascaded DFG using a CPM GaAs process contributes to efficient THz-radiation generation.Absorption is one of the main factors in the terahertz source.Comparing to cascaded DFG processes based on quasi phase-matched(QPM),cascaded DFG using a CPM GaAs has better output characteristic.The research has reference value for cascaded DFG using a CPM GaAs in the terahertz technology.

参考文献/References:

[1] Han C,Bicen A O,Akvildiz I F.Multi-wideband waveform design for distance-adaptive wireless communications in the terahertz band[J].IEEE Transactions on Signal Processing,2016,64(4):910-922.
[2] Dong J,Locquet A,Citrin D S.Terahertz quantitative nondestructive evaluation of failure modes in polymer-coated steel[J].IEEE Journal of Selected Topics in Quantum Electronics,2016,23(4):1-7.
[3] Vaks V,Domracheva E,Sobakinskava,et al.High-precision terahertz spectroscopy for noninvasive medicine diagnostics[J].Photonics and Lasers in Medicine,2014,3(4):373-380.
[4] 柴路,牛跃,栗岩锋,等.差频可调谐太赫兹技术的新进展[J].物理学报,2016,65(7):1-15.
[5] 余萍,熊狂炜.基于VO2相变可调制的复合结构异向介质的研究[J].江西师范大学学报:自然科学版,2014,38(1):78-82.
[6] 冯正,谭为,成彬彬,等.基于自旋电子学的太赫兹波产生方法[J].太赫兹科学与电子信息学报,2016,14(4):502-507.
[7] Cruz F C,Maser D L,Johnson T,et al.Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy[J].Optics Express,2015,23(20):26814-26824.
[8] Yan Dexian,Wang Yuyue,Xu Degang,et al.High-average-power,high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator[J].Photonics Research,2017,5(2):82.
[9] Wang Peng,Shang Yaping,Li Xiao,et al.Multi-wavelength mid-infrared laser generation based on optical parametric oscillation and intracavity difference frequency generation[J].IEEE Photonics Journal,2017 99:1-5.
[10] Armstrong J A,Bloembergen N,Ducuing J,et al.Interactions between light waves in a nonlinear dielectric[J].Phys Rev,1962,127(6):1918-1939.
[11] 王翠玲,徐世林.GaAs参量振荡产生太赫兹波的腔相位匹配研究[J].红外,2013,34(11):31-36.
[12] Saito K,Tanabe T,Oyama Y.Cascaded terahertz-wave generation efficiency in excess of the Manley-Rowe limit using a cavity phase-matched optical parametric oscillator[J].Journal of the Optical Society of America B,2015,32(4):617-621.
[13] Li Zhongyang,Wang Silei,Wang Mengtao,et al.Terahertz generation based on cascaded difference frequency generation with periodically-poled KTiOPO4[J].Current Optics and Photonics,2017,1(2):138-142.
[14] Ravi K,Hemmer M,Cirmi G,et al.Cascaded parametric amplification for highly efficient terahertz generation[J].Optics Letters,2016,41(16):3806-3809.
[15] Xu Degang,Liu Pengxiang,Yu Hong,et al.Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation[J].Journal of Lightwave Technology,2013,31(15):2508-2514.
[16] Ravik K,Schimpf D N,Kartner F X.Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate[J].Optics Express,2016,24(22):25582-25607.
[17] Sang Haiyu,Li Ming,Yu Xiangyang,et al.Study of intensity-dependent nonlinear optical coefficients of GaP optical crystal at 800 nm by femtosecond pump-probe experiment[J].Chinese Optics Letters,2006,4(9):536-538.
[18] Xie Zhidong,Lü Xiaojun,Liu Yuehui,et al.Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet[J].Phys Rev Lett,2011,106(8):83901.
[19] Faust W L,Henry C H.Mixing of visible and near-resonance infrared light in GaP[J].Physical Review Letters,1966,17(25):1265-1268.
[20] Skauli T,Kuo P S,Vodopyanov K L,et al.Improved dispersion relations for GaAs and applications to nonlinear optics[J].Journal of Applied Physics,2003,94(10):6447-6455.
[21] Rao Zhiming,Wang Xinbing,Lu Yanzhao.Tunable terahertz generation from one CO2,laser in a GaSe crystal[J].Optics Communications,2011,284(23):5472-5474.
[22] Martin A R,Turner T.Adaptive characterization of laser damage from sparse defects[EB/OL].[2018-11-19].10.1117/12.2068213.
[23] Palik E D.Gallium Arsenide(GaAs)[M].Handbook of Optical Constants of Solids,1997:429-443.
[24] 黄俊滔,饶志明,谢芳森.GaP,GaAs和PPLN晶体级联差频产生太赫兹辐射[J].太赫兹科学与电子信息学报,2018,16(4):576-584.
[25] Cronin-Golomb M.Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production[J].Optics Letters,2004,29(17):2046-2048.

备注/Memo

备注/Memo:
收稿日期:2019-02-19基金项目:国家自然科学基金(11664017),江西省自然科学基金(20161BAB202052)和江西省教育厅科技课题(GJJ160305)资助项目.通信作者:谢芳森(1961-),男,江西兴国人,教授,主要从事电子信息技术与光电信息监测的研究.E-mail:xiefangsen@163.com
更新日期/Last Update: 2019-10-10