[1]简弃非,祖帅飞,廖小南.超薄平板热管的热阻与沸腾气泡可视化实验研究[J].江西师范大学学报(自然科学版),2019,(06):551-558.[doi:10.16357/j.cnki.issn1000-5862.2019.06.01]
 JIAN Qifei,ZU Shuaifei,LIAO Xiaonan.The Experimental Study on Thermal Resistance and Boiling Bubble Visualization of Ultra-Thin Flat Heat Pipe[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):551-558.[doi:10.16357/j.cnki.issn1000-5862.2019.06.01]
点击复制

超薄平板热管的热阻与沸腾气泡可视化实验研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
551-558
栏目:
新能源装备
出版日期:
2019-12-10

文章信息/Info

Title:
The Experimental Study on Thermal Resistance and Boiling Bubble Visualization of Ultra-Thin Flat Heat Pipe
文章编号:
1000-5862(2019)06-0551-08
作者:
简弃非祖帅飞廖小南
华南理工大学机械与汽车工程学院,广东 广州510640
Author(s):
JIAN QifeiZU ShuaifeiLIAO Xiaonan
School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou Guangdong 510640,China
关键词:
超薄平板热管 充液率 可视化 丝网芯
Keywords:
ultra-thin flat heat pipe charging rate visualization wire core
分类号:
TG 115.21
DOI:
10.16357/j.cnki.issn1000-5862.2019.06.01
文献标志码:
A
摘要:
鉴于无法观察到封闭热管内部气泡生长,设计制作了一种腔体厚度约为1 mm的双层丝网芯的超薄平板热管,进行了可视化的实验研究.实验结果表明:热阻值在1.2~1.7 ℃?W-1之间波动,在15 W热负荷下的最佳充液率为25%左右.可视化结果表明:气泡主要在丝网交叉的缝隙中形成,在微液层中,气泡受到丝网的阻碍作用而呈现出形状不规则的生长状况.与开放空间相比,气泡无法沿腔体厚度方向扩张,以扁平气泡形状沿轴向生长.当热负荷增大时,会出现气泡破裂的冲击现象.
Abstract:
Due to the inability to observe the bubble growth inside the closed heat pipe,an ultra-thin flat heat pipe with a double layer wire mesh core with a cavity thickness of about 1 mm is designed and fabricated,and the visualization experiment is carried out.The experimental results show that the thermal resistance fluctuates from 1.2 ℃?W-1 to 1.7 ℃?W-1,and the optimal liquid filling rate is about 25% under the thermal load of 15 W.The visualization results show that the bubbles are mainly formed in the interlacing gaps of the wire mesh,and in the micro-liquid layer,the bubbles are obstructed by the wire mesh and show irregular growth conditions.Compared with open space,bubbles can't expand along the thickness of the cavity and grow along the axis in the shape of flat bubbles.When the heat load increases,bubble bursting will occur.

参考文献/References:

[1] Yang Xiao,Yan Yuying,Mullen D.Recent developments of lightweight,high performance heat pipes[J].Applied Thermal Engineering,2012,33/34:1-14.
[2] Chen Xianping,Ye Huaiyu,Fan Xuejun,et al.A review of small heat pipes for electronics[J].Applied Thermal Engineering,2016,96:1-17.
[3] Ye Xin,Zhao Yaohua,Quan Zhenhua.Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array(MHPA)[J].Applied Thermal Engineering,2018,130:74-82.
[4] Tang Heng,Tang Yong,Wan Zhenping,et al.Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J].Applied Energy,2018,223:383-400.
[5] Yadavalli Y,Weibel J,Garimella S.Performance-governing transport mechanisms for heat pipes at ultrathin form factors[J].IEEE T Comp Pack Man Tech,2015,5(11):1618-1629.
[6] Zhou Wenjie,Li Yong,Chen Zhaoshu,et al.A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices[J].Energy Conversion and Management,2019,180:769-783.
[7] Zhang Shiwei,Chen Jieling,Sun Yalong,et al.Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe[J].Renewable Energy,2019,135:1133-1143.
[8] Xin Fei,Ma Ting,Wang Qiuwang.Thermal performance analysis of flat heat pipe with graded mini-grooves wick[J].Applied Energy,2018,228:2129-2139.
[9] Ramachandran R,Ganesan K,Rajkumar M R,et al.Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe[J].International Communications in Heat and Mass Transfer,2016,76:294-300.
[10] Khalili M,Shafii M B.Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe[J].Applied Thermal Engineering,2016,94:59-75.
[11] Liu Wangyu,Gou Jingren,Luo Yuanqiang,et al.The experimental investigation of a vapor chamber with compound columns under the influence of gravity[J].Applied Thermal Engineering,2018,140:131-138.
[12] 洪宇平,李强,宣益民.小型平板热管传热实验研究[J].南京理工大学报:自然科学版,2001,25(1):32-35.
[13] 张丽春,葛新石,马同泽,等.微槽平板热管传热性能的实验研究[J].工程热物理学报,2003,24(3):493-495.
[14] 范春利,曲伟,杨立,等.微槽平板热管传热性能的实验研究[J].海军工程大学学报,2004,16(2):1-4.
[15] 陈文军.基于预成型的超薄铝平板热管多齿犁削机理及性能分析[D].广州:华南理工大学,2018.
[16] 陈杰凌.基于多孔吸液芯的超薄铝平板热管的制造及其传热性能研究[D].广州:华南理工大学,2018.
[17] Pis'mennyi E N,Khayrnasov S M,Rassamakin B M.Heat transfer in the evaporation zone of aluminum grooved heat pipes[J].International Journal of Heat and Mass Transfer,2018,127:80-88.
[18] Wong Shwin Chung,Liao Wei Siang.Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles[J].International Journal of Heat and Mass Transfer,2018,123:839-847.
[19] 于程,刘向东,张孟臣,等.平板热管内气液两相流动与传热的可视化实验研究[J].工程热物理学报,2017,38(4):807-810.
[20] Yu Fawen,Yu Cheng,Cao Jianguang,et al.Experimental analysis of the evaporation regimes of an axially grooved heat pipe at small tilt angles[J].International Journal of Heat and Mass Transfer,2018,126:334-341.

相似文献/References:

[1]廖小南,简弃非*,祖帅飞.不同结构吸液芯的超薄平板热管传热性能研究[J].江西师范大学学报(自然科学版),2019,(06):559.[doi:10.16357/j.cnki.issn1000-5862.2019.06.02]
 LIAO Xiaonan,JIAN Qifei*,ZU Shuaifei.The Study on Heat Transfer Performance of Ultra-Thin Flat Heat Pipe with Different Structure Wick[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):559.[doi:10.16357/j.cnki.issn1000-5862.2019.06.02]

备注/Memo

备注/Memo:
收稿日期:2019-06-13
基金项目:国家自然科学基金(21776095)和广州市科技计划(201804020048)资助项目.
作者简介:简弃非(1963-),男,湖南邵阳人,教授,博士,博士生导师,主要从事传热节能与新能源装备研究.E-mail:tcjqf@scut.edu.cn
更新日期/Last Update: 2019-12-10