[1]翟煜锦,李培芸,项青宇,等.基于QE的机器翻译重排序方法研究[J].江西师范大学学报(自然科学版),2020,(01):46-50+88.[doi:10.16357/j.cnki.issn1000-5862.2020.01.08]
 ZHAI Yujin,LI Peiyun,XIANG Qingyu,et al.The Study on the Method of Machine Translation Reordering Based on QE[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(01):46-50+88.[doi:10.16357/j.cnki.issn1000-5862.2020.01.08]
点击复制

基于QE的机器翻译重排序方法研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
46-50+88
栏目:
机器翻译
出版日期:
2020-02-10

文章信息/Info

Title:
The Study on the Method of Machine Translation Reordering Based on QE
文章编号:
1000-5862(2020)01-0046-05
作者:
翟煜锦李培芸项青宇李茂西*裘白莲钟茂生王明文
江西师范大学计算机信息工程学院,江西 南昌 330022
Author(s):
ZHAI YujinLI PeiyunXIANG QingyuLI Maoxi*QIU BailianZHONG MaoshengWANG Mingwen
College of Computer Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
机器翻译 机器翻译质量估计 重排序 编码器-解码器模型 卷积神经网络
Keywords:
machine translation machine translation quality estimation reordering encoder-decoder model convolutional neural network
分类号:
TP 391
DOI:
10.16357/j.cnki.issn1000-5862.2020.01.08
文献标志码:
A
摘要:
该文提出了一种融合BERT语境向量的多模型集成的翻译质量估计方法,以及基于译文质量估计的多候选译文重排序方法,实验结果表明,这2种方法均取得了较好的实验效果.
Abstract:
A multi-model ensemble quality estimation method is proposed,which integrates the BERT context vectors.Based on quality estimation,a multi-candidate translation reordering method has been proposed.The experimental results show that both methods have achieved good results.

参考文献/References:

[1] Specia L,Shah K,De Souza J G C,et al.QuEst:a translation quality estimation framework[EB/OL].[2019-05-05].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.3135.
[2] Li Maoxi,Xiang Qingyu,Chen Zhiming,et al.A unified neural network for quality estimation of machine translation[J].Ieice Transactions on Information and Systems,2018,101(9):2417-2421.
[3] Shah K,Bougares F,Barrault L,et al.SHEF-LIUM-NN:sentence level quality estimation with neural network features[EB/OL].[2019-03-06].https://www.aclweb.org/anthology/W16-2392.pdf.
[4] 陈志明,李茂西,王明文.基于神经网络特征的句子级别译文质量估计[J].计算机研究与发展,2017,54(8):1804-1812.
[5] Bahdanau D,Cho K,Bengio Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2019-03-09].https://arxiv.org/abs/1409.0473.
[6] Sennrich R,Firat O,Cho K,et al.Nematus:a toolkit for neural machine translation[EB/OL].[2019-03-13].https://arxiv.org/abs/1703.04357.
[7] 宗成庆.统计自然语言处理[M].北京:清华大学出版社,2008.
[8] 刘洋.神经机器翻译前沿进展[J].计算机研究与发展,2017,54(6):1144-1149.
[9] 李亚超,熊德意,张民.神经机器翻译综述[J].计算机学报,2018,41(12):2734-2755.
[10] Kim H,Jung H-Y,Kwon H,et al.Predictor-estimator:neural quality estimation based on target word prediction for machine translation[J].ACM Transactions on Asian and Low-Resource Language Information Processing,2017,17(1):1-22.
[11] Devlin J,Chang M W,Lee K,et al.Bert:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-03-20].https://arxiv.org/abs/1810.04805?context=cs.
[12] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[EB/OL].[2019-04-06].https://arxiv.org/abs/1706.03762.
[13] Sennrich R,Haddow B,Birch A.Neural machine translation of rare words with subword units[EB/OL].[2019-03-17].https://arxiv.org/abs/1508.07909.
[14] Vaswani A,Bengio S,Brevdo E,et al.Tensor2tensor for neural machine translation[EB/OL].[2019-03-16].https://arxiv.org/abs/1803.07416.
[15] Papineni K,Roukos S,Ward T,et al.BLEU:a method for automatic evaluation of machine translation[EB/OL].[2019-03-19].https://dl.acm.org/citation.cfm?id=1073135.

备注/Memo

备注/Memo:
收稿日期:2019-09-12
基金项目:国家自然科学基金(61662031,61462044,61877031,61876074)资助项目.
通信作者:李茂西(1977-),男,湖北黄梅人,教授,博士,主要从事自然语言处理和机器翻译的研究.E-mail:mosesli@jxnu.edu.cn
更新日期/Last Update: 2020-02-10