[1]左妹华,卢美华,梁周扬.基于Hasse图的体验品群推荐研究——以餐饮业为例[J].江西师范大学学报(自然科学版),2020,(02):209-214.[doi:10.16357/j.cnki.issn1000-5862.2020.02.18]
 ZUO Meihua,LU Meihua,LIANG Zhouyang.The Study on Experience Group Recommendation Based on Hasse Diagram——Take the Catering Industry as an Example[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(02):209-214.[doi:10.16357/j.cnki.issn1000-5862.2020.02.18]
点击复制

基于Hasse图的体验品群推荐研究——以餐饮业为例()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
209-214
栏目:
数学与应用数学
出版日期:
2020-04-10

文章信息/Info

Title:
The Study on Experience Group Recommendation Based on Hasse Diagram——Take the Catering Industry as an Example
文章编号:
1000-5862(2019)06-0209-06
作者:
左妹华1卢美华2梁周扬3
1.惠州学院建筑与土木工程学院,广东 惠州 516000; 2.江西科技学院理学部,江西 南昌 330022; 3.广东工业大学管理学院,广东 广州 510520
Author(s):
ZUO Meihua1LU Meihua2LIANG Zhouyang3
1.School of Architecture and Civil Engineering,Huizhou University,Huizhou Guangdong 516000,China; 2.School of Science,Jiangxi University of Technology,Nanchang Jiangxi 330022,China; 3.School of Management,Guangdong University of Technology,Guangzhou Guang
关键词:
Hasse图 美食店铺 多属性 动态属性 群体推荐
Keywords:
Hasse diagram gourmet shops multi-attribute dynamic attributes group recommendation
分类号:
C 934; TP 311
DOI:
10.16357/j.cnki.issn1000-5862.2020.02.18
文献标志码:
A
摘要:
针对目标群体对属性偏好的冲突性及不相容性等特点,采用Hasse图进行多属性集结,同时,考虑异质性消费者对各属性的偏好程度随时间推移而发生变化,因而在静态多属性群推荐研究的基础上考虑属性偏好的动态性.结果显示:在采用Hasse图进行动态多属性群推荐时,该方法具有较强的鲁棒性.
Abstract:
In view of the characteristics of the attribute preferences conflict and incompatibility in the target groups,Hasse diagram is adopted for multi-attribute aggregation.At the same time,it is considered that the degree of heterogeneous consumer's preferences for each attribute changes with time.Therefore,the dynamic nature of attribute preference is considered on the basis of traditional static multi-attribute group recommendation research.The results show that the method has strong robustness when Hasse diagram is used for dynamic multi-attribute group recommendation.

参考文献/References:

[1] Adomavicius G,Tuzhili A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[2] Resnick P,Varian H R.Recommender system[J].Communications of the ACM,1997,40(3):56-58.
[3] 于东.融合位置上下文和信任关系的美食商家推荐算法研究与实现[D].北京:北京邮电大学,2015.
[4] 熊聪聪,邓滢,史艳翠,等.基于协同过滤的美食推荐算法[J].计算机应用研究,2017,34(7):1985-1988.
[5] 郭均鹏,高成菊,赵旻昊.一种基于符号数据的群体推荐算法[J].系统工程学报,2015,30(1):127-134.
[6] 王茜,邓伟伟,喻继军.一种考虑群成员接受度及相似度的群体推荐算法[J].计算机应用研究,2017,34(11):3285-3290,3298.
[7] 朱国玮,杨玲.基于遗传算法的群体推荐系统研究[J].情报学报,2009,28(6):946-951.
[8] 朱国玮,周利.基于遗忘函数和领域最近邻的混合推荐研究[J].管理科学学报,2012,15(5):55-64.
[9] Garcia I,Scbastia L,Onaindia E,et al.A group recommender system for tourist activities[M]∥Noia T D,Buccafurri F.E-commerce and web technologies:10th International Conference,Berlin:Springer-Verlag,2009:26-37.
[10] Chen Yeliang,Cheng Lichen,Chuang Chingnan.A group recommendation system with consideration of interactions among group members[J].Expert Systems with Applications,2008,34(3):2082-2090.
[11] 李汶华,熊晓栋,郭均鹏.一种基于案例推理和协商的群体推荐算法[J].系统工程,2013,31(11):93-98.
[12] 范顺忠,陈浩.基于兴趣感知和时间因子的个性化菜品推荐[J].计算机应用研究,2018,35(2):358-361,371.
[13] Bobadilla J,Ortega F,Hernando A,et al.Generalization of recommender systems:collaborative filtering extended to groups of users and restricted to groups of items[J].Expert Systems with Applications,2012,39(1):172-186.
[14] 潘宇,林鸿飞.基于语义极性分析的餐馆评论挖掘[J].计算机工程,2008,34(17):208-210.
[15] 王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20.
[16] 郭春香,孙萧雅,林雅琴.具有偏好图信息的动态格序群体决策问题的鲁棒优化[J].系统管理学报,2016,25(1):139-149.

相似文献/References:

[1]丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用[J].江西师范大学学报(自然科学版),2013,(05):441.
 DING Shu-liang,LUO Fen.An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(02):441.

备注/Memo

备注/Memo:
收稿日期:2019-07-15
基金项目:国家自然科学基金(71671048),国家社会科学基金(17BJL025)和广东省哲学社会科学基金青年(GD19YGL15)资助项目.
作者简介:左妹华(1986-),女,江西九江人,讲师,博士研究生,主要从事消费者行为、智能商务、多属性决策研究.E-mail:zuomeihua123@126.com
更新日期/Last Update: 2020-04-10